Skip to main content
Log in

Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Although plant biotisation with arbuscular mycorrhizal fungi (AMF) is a promising strategy for improving plant health, a better knowledge regarding the molecular mechanisms involved is required. In this context, we sought to analyse the root proteome of grapevine rootstock Selection Oppenheim 4 (SO4) upon colonisation with two AMF. As expected, AMF colonisation stimulates plant biomass. At the proteome level, changes in protein amounts due to AMF colonisation resulted in 39 differentially accumulated two-dimensional electrophoresis spots in AMF roots relative to control. Out of them, 25 were co-identified in SO4 roots upon colonisation by Glomus irregulare and Glomus mosseae supporting the existence of conserved plant responses to AM symbiosis in a woody perennial species. Among the 18 proteins whose amount was reduced in AMF-colonised roots were proteins involved in glycolysis, protein synthesis and fate, defence and cell rescue, ethylene biosynthesis and purine and pyrimidine salvage degradation. The six co-identified proteins whose amount was increased had functions in energy production, signalling, protein synthesis and fate including proteases. Altogether these data confirmed that a part of the accommodation program of AMF previously characterized in annual plants is maintained within roots of the SO4 rootstock cuttings. Nonetheless, particular responses also occurred involving proteins of carbon metabolism, development and root architecture, defence and cell rescue, anthocyanin biosynthesis and P remobilization, previously reported as induced upon P-starvation. This suggests the occurrence of P reprioritization upon AMF colonization in a woody perennial plant species with agronomical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel S, Ticconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Physiol Plant 115:1–8

    PubMed  CAS  Google Scholar 

  • Aguin O, Mansilla JP, Vilarino A, Sainsz MJ (2004) Effect of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Amer J Enol Viticult 55:108–111

    Google Scholar 

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    PubMed  CAS  Google Scholar 

  • Andreadeli A, Flemetakis E, Axarli I, Dimou M, Udvardi MK, Katinakis P, Labrou NE (2009) Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia. Biochim Biophys Acta 1794:976–984

    PubMed  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Basha SM, Mazhar H, Vasanthaiah HKN (2010) Proteomics approach to identify unique xylem sap proteins in Pierce’s disease-tolerant Vitis species. Appl Biochem Biotech 160:932–944

    CAS  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524

    PubMed  CAS  Google Scholar 

  • Bavaresco L, Fogher C (1992) Effect of root infection with Pseudomonas fluorescens and Glomus mosseae in improving Fe-efficiency of grapevine ungrafted rootstocks. Vitis 31:163–168

    CAS  Google Scholar 

  • Bavaresco L, Fogher C (1996) Lime induced chlorosis of grapevine as affected by rootstock and root infection with arbuscular mycorrhiza and Pseudomonas fluorescens. Vitis 35:119–123

    CAS  Google Scholar 

  • Berta G, Fusconi A (1997) Effects of arbuscular mycorrhizal and ericoid fungi on the structure and activity of host cell nuclei. In: Bryant J, Chiatante D (eds) Plant and cell proliferation. Wiley, Chichester, pp 135–151

    Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23:122–137

    PubMed  CAS  Google Scholar 

  • Bestel-Corre G, Gianinazzi S, Dumas-Gaudot E (2004) Impact of sewage sludges on Medicago truncatula symbiotic proteomes. Phytochemistry 65:1651–1659

    PubMed  CAS  Google Scholar 

  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 23:915–926

    PubMed  CAS  Google Scholar 

  • Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of upregulated plant and fungal genes in early and late stages of Medicago truncatula–Glomus mosseae interactions. Mycorrhiza 14:253–262

    PubMed  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    PubMed  CAS  Google Scholar 

  • Camprubí A, Estaún V, Nogales A, García-Figueres F, Pitet M, Calvet C (2008) Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18:211–216. doi:10.1007/s00572-008-0168-3

    PubMed  Google Scholar 

  • Carvalho LC, Esquivel MG, Martins I, Ricardo CP, Amancio S (2005) Monitoring the stability of Rubisco in micropropagated grapevine (Vitis vinifera L.) by two-dimensional electrophoresis. J Plant Physiol 162:365–374

    PubMed  CAS  Google Scholar 

  • Castro AJ, Carapito C, Zorn N, Magne C, Leize E, Van Dorsselaer A, Clément C (2005) Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot 56:2783–2795

    PubMed  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    CAS  Google Scholar 

  • Cheng XM, Baumgartner K (2004) Survey of arbuscular mycorrhizal fungal communities in Northern California vineyards and mycorrhizal colonization potential of grapevine nursery stock. Hort Sci 39:1702–1706

    Google Scholar 

  • Cheng XM, Baumgartner K (2006) Effects of mycorrhizal roots and extraradical hyphae on 15N uptake from vineyard cover crop litter and the soil microbial community. Soil Biol Biochem 38:2665–2675

    CAS  Google Scholar 

  • Chung HJ, Ferl RJ (1999) Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol 121:429–436

    PubMed  CAS  Google Scholar 

  • Deguchi Y, Banba M, Shimoda Y, Checheetka SA, Suzuri R, Okusako Y, Yasuhiro Ooki, Koichi Toyokura K, Suzuki A, Uchiumi T, Higachi I, Abe M, Kouchi H, Izui K, Shingo Hata S (2007) Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA Res 14:117–133

    PubMed  CAS  Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of host defense systems. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 173–200

    Google Scholar 

  • Dumas-Gaudot E, Valot B, Bestel-Corre G, Recorbet G, ST-Arnaud M, Fontaine B, Dieu M, Raes M, Saravanan RS, Gianinazzi S (2004) Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices—RiT-DNA carrot root mycorrhizas. FEMS Microbiol Ecol 48:401–411

    PubMed  CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (2006) The role of acid phosphatases in plant phosphorous metabolism. Physiol Plant 90:791–800

    Google Scholar 

  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987. doi:10.1111/j.1469-8137.2009.03031.x

    PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    PubMed  CAS  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    PubMed  CAS  Google Scholar 

  • Genre A, Bonfante P (1998) Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol 140:745–752

    CAS  Google Scholar 

  • Giovannini E (1999) Produção de uvas para vinho, suco e mesa. Renascença, Porto Alegre, p 364

    Google Scholar 

  • Görg A, Postel W, Weser J, Günther S, Strahler JR, Hanash SM, Somerlot L (1987) Elimination of point streaking on silver stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8:122–124

    Google Scholar 

  • Grunwald U, Nyamsuren O, Tamasloukht MB, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55:553–566

    PubMed  CAS  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    PubMed  CAS  Google Scholar 

  • Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonisation. Proc Natl Acad Sci USA 102:8066–8070

    PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    PubMed  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Bio 50:361–389

    CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in studies of plant nutrition. Commonwealth Agricultural Bureau, London

    Google Scholar 

  • Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    PubMed  CAS  Google Scholar 

  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Remy R, des Francs-Small CC (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116:627–635

    PubMed  CAS  Google Scholar 

  • Ignoul S, Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 289:C1369–C1378

    PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory rôles. Plant Cell Environ 30:310–322

    PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    PubMed  CAS  Google Scholar 

  • Jiang J, Clouse SD (2001) Expression of a plant gene with sequence similarity to animal TGF-beta receptor interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J 26:35–45

    PubMed  CAS  Google Scholar 

  • Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis. Bulletin 766, California Agricultural Experimental Station, pp 25–78

  • Karagiannidis N, Nikolaou N, Mattheou A (1995) Influence of three VA-mycorrhiza species on the growth and nutrient uptake of three grapevine rootstocks and one table grape cultivar. Vitis 34:85–89

    Google Scholar 

  • Karagiannidis N, Nikolaou N, Ipsilantis I, Zioziou E (2007) Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza 18:43–50. doi:10.1007/s00572-007-0153-2

    PubMed  CAS  Google Scholar 

  • Krüger A, Peskan-Berghöfer T, Frettinger P, Herrmann S, Buscot F, Oelmüller R (2004) Identification of premycorrhiza-related plant genes in the association between Quercus robur and Piloderma croceum. New Phytol 163:149–157

    Google Scholar 

  • Li K, Xu C, Zhang K, Yang A, Zhang J (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7:1501–1512

    PubMed  CAS  Google Scholar 

  • Li K, Xu C, Li Z, Zhang K, Yang A, Zhang J (2008) Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J 55:927–939

    PubMed  CAS  Google Scholar 

  • Li LH, Qiu XH, Li XH, Wang SP, Lian XM (2009) The expression profile of genes in rice roots under low phosphorus stress. Sci China C Life Sci 52:1055–1064

    PubMed  CAS  Google Scholar 

  • Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    PubMed  CAS  Google Scholar 

  • Linderman RG, Davis EA (2001) Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Amer J Enol Viticult 52:8–11

    CAS  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, Vanden Bosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    PubMed  CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529544

    Google Scholar 

  • McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesicular–arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351

    PubMed  CAS  Google Scholar 

  • Marschner M (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marsoni M, Vannini C, Campa M, Cucchi U, Espen L, Bracale M (2005) Protein extraction from grape tissues by two dimensional electrophoresis. Vitis 44:181–186

    CAS  Google Scholar 

  • Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V (2007) Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota. Mycorrhiza 17:223–234

    PubMed  CAS  Google Scholar 

  • Mathesius U, Keijzers G, Natera SHA, Weinman JJ et al (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440

    PubMed  CAS  Google Scholar 

  • Menge DJ, Raski LA, Lider LV, Johnson NO, Jones JJ, Kissler HCL (1983) Interactions between mycorrhizal fungi, soil fumigation, and growth of grapes in California. Amer J Enol Viticult 34:117–121

    Google Scholar 

  • Meier I (2007) Composition of the plant nuclear envelope: theme and variations. J Exp Bot 58:27–34

    PubMed  CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 16:11934–11939

    Google Scholar 

  • Nikolaou N, Angelopoulos K, Karagiannidis N (2003) Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine, grafted onto various rootstocks. Expl Agric 39:241–252

    Google Scholar 

  • Nogales A, Aguirreolea J, María ES, Camprubí A, Calvet C (2009) Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant Soil 317:177–187. doi:10.1007/s11104-008-9799-6

    CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    CAS  Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologist, Rockville, pp 1–35. doi:10.1199/tab.0024

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    PubMed  CAS  Google Scholar 

  • Ramagli LS, Rodriguez LW (1985) Quantification of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6:559–563

    CAS  Google Scholar 

  • Recorbet G, Dumas-Gaudot E (2008) Proteomics of biotrophic plant-microbe interactions: symbioses lead the march. In: Agrawal GK, Rakwal R (eds) Plant proteomics. Wiley-Intersciences, Hoboken, pp 629–642

    Google Scholar 

  • Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E (2010) Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 47:608–618

    PubMed  CAS  Google Scholar 

  • Reynier A (2002) Manual de Viticultura, 6th edn. Mundi Prensa, Madrid

    Google Scholar 

  • Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl Acids Res 32:5539–5545

    PubMed  CAS  Google Scholar 

  • Robinson J, Treeby MT, Stephenson RA (1997) Fruits, vines and nuts. In: Reuter DJ, Robinson JB (eds) Plant analysis—an interpretation manual. CSIRO, Melbourne, pp 347–389

    Google Scholar 

  • Saravanan RS, Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522–2532

    PubMed  CAS  Google Scholar 

  • Sarry JE, Sommerer N, Sauvage FX, Bergoin A, Rossignol M, Albagnac G, Romieu C (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4:201–215

    PubMed  CAS  Google Scholar 

  • Schenkluhna L, Hohnjec N, Niehausa K, Schmitz U, Colditz F (2010) Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. J Proteomics 73:753–768

    Google Scholar 

  • Schubert A, Cravero MC (1985) Occurrence and infectivity of vesicular–arbuscular mycorrhizal fungi in North-Western Italian vineyards. Vitis 24:129–138

    Google Scholar 

  • Slezack S, Dumas-Gaudot E, Rosendahl S, Kjöller R, Paynot M, Negrel J, Gianinazzi S (1999) Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytol 142:517–529

    Google Scholar 

  • Smith SE, Read DJ (2008) In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Souza PVD, Facchin H, Dias AA (2004) Development of grapevine rootstock SO4 affected by cutting size and arbuscular mycorrhizal fungi. Cienc Rural 34:955–957

    Google Scholar 

  • St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Soil biology series. Springer, Berlin, pp 217–231

    Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production: applying knowledge. Haworth, Binghampton, pp 67–122

    Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187. doi:10.1111/j.1469-8137.2009.02874

    PubMed  Google Scholar 

  • Tahiri-Alaoui A, Lingua G, Avrova A, Sampò S, Fusconi A, Antoniw J, Berta G (2002) A cullin gene is induced in tomato roots forming arbuscular mycorrhizae. Can J Bot 80:607–616

    CAS  Google Scholar 

  • Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777

    PubMed  CAS  Google Scholar 

  • Thelen JJ (2007) Introduction to proteomics: a brief historical perspective on contemporary approaches. In: Samaj J, Thelen JJ (eds) Plant proteomics. Springer, Berlin, pp 1–13

    Google Scholar 

  • Timonen S, Smith SE (2005) Effect of the arbuscular mycorrhizal fungus Glomus intraradices on expression of cytoskeletal proteins in tomato roots. Can J Bot 83:176–182

    CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Les mycorhizes: physiologie et génétique. INRA, Paris, pp 217–221

    Google Scholar 

  • Valdes-Lopez O, Hernandez G (2008) Transcriptional regulation and signaling in phosphorus starvation: what about legumes? J Integrat Plant Biol 50:1213–1222

    CAS  Google Scholar 

  • Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E (2005) Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. Plant Mol Biol 59:565–580

    PubMed  CAS  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    PubMed  CAS  Google Scholar 

  • Vierheilig H, Coughlan A, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Vincent D, Wheatley MD, Cramer GR (2006) Optimization of protein extraction and solubilization for mature grape berry clusters. Electrophoresis 27:1853–1865

    PubMed  CAS  Google Scholar 

  • Vincent D, Ergul A, Bohlman MC, Tattersall EAR, Tillett RL, Wheatley MD, Woolsey R, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892

    Google Scholar 

  • Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472–478

    PubMed  CAS  Google Scholar 

  • Wang W, Bianchi L, Scali M, Liangwei L, Liu L, Bini L, Cresti M (2009) Proteomic analysis of b-1, 3-glucanase in grape berry tissues. Acta Physiol Plant 31:597–604

    CAS  Google Scholar 

  • Waschkies C, Schropp A, Marschner H (1994) Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent Pseudomonas and endomycorrhizal fungi. Plant Soil 162:219–227

    Google Scholar 

  • Whipps JM (2001) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16:306–314

    PubMed  CAS  Google Scholar 

  • Yuan H, Liu D (2008) Signaling components involved in plant responses to phosphate starvation. J Integr Plant Biol 50:849–859

    PubMed  CAS  Google Scholar 

  • Zeng L-R, Vega-Sánchez M-E, Zhu T, Wang G-L (2006) Ubiquitination-mediated protein degradation and modification: an emerging theme in plant–microbe interactions. Cell Res 16:413–426

    PubMed  CAS  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in the frame of a CAPES/COFECUB project (SV553/07). GC Cangahuala-Inocente and MF Da Silva received 1-year postdoctoral grant from CAPES. Authors thank S. Gianinazzi and MC Lemoine for providing SO4 rootstock material and JL Rousselet for technical assistance in preparing the SO4 cuttings. They acknowledge G. Recorbet for critically reading the manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Emílio Lovato.

Additional information

Gabriela Claudia Cangahuala-Inocente and Maguida Fabiana Da Silva contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cangahuala-Inocente, G.C., Da Silva, M.F., Johnson, JM. et al. Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. Mycorrhiza 21, 473–493 (2011). https://doi.org/10.1007/s00572-010-0352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0352-0

Keywords

Navigation