Skip to main content

Advertisement

Log in

Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or °Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids (°Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews M, Lea PJ, Raven JA, Kindsey K (2004) Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Ann Appl Biol 145:25–40

    Article  CAS  Google Scholar 

  • Azcón R, Gomez M, Tobar R (1992) Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytol 121:227–234

    Article  Google Scholar 

  • Azcón R, Ruiz-Lozano J, Rodriguez R (2001) Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (N-15) under increasing N supply to the soil. Can J Bot 79:1175–1180

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1987) Vesicular-arbuscular mycorrhiza improve both symbiotic N2 fixation and N uptake from soil as assessed with a N-15 technique under field conditions. New Phytol 106:717–726

    Article  CAS  Google Scholar 

  • Bavaresco L, Fogher C (1996) Lime-induced chlorosis of grapevine as affected by rootstock and root infection with arbuscular mycorrhiza and Pseudomonas fluorescens. Vitis 35:119–123

    CAS  Google Scholar 

  • Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine R 11:242–295

    Article  CAS  Google Scholar 

  • Bennett JN, Prescott CE (2004) Organic and inorganic nitrogen nutrition of western red cedar, western hemlock and salal in mineral N-limited cedar-hemlock forests. Oecologia 141:468–476

    Article  PubMed  Google Scholar 

  • Caglar S, Bayram A (2006) Effects of vesicular–arbuscular mycorrhizal (VAM) fungi on the leaf nutritional status of four grapevine rootstocks. Eur J Hortic Sci 71:109–113

    Google Scholar 

  • Cheng X, Baumgartner K (2004) Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines. Biol Fertil Soils 40:406–412

    Article  CAS  Google Scholar 

  • Cheng X, Baumgartner K (2006) Effects of mycorrhizal roots and extraradical hyphae on 15N uptake form vineyard cover crop litter and the soil microbial community. Soil Biol Biochem 38:2665–2675

    Article  CAS  Google Scholar 

  • Christou M, Avramides EJ, Jones DL (2006) Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biol Biochem 38:2265–2277

    Article  CAS  Google Scholar 

  • Cottenie A (1980) Soil and plant testing as a basis of fertilizers recommendation. F.A.O.Soil Bulletin 38. Rome

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Louçâo MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177–184

    Article  CAS  PubMed  Google Scholar 

  • Cuenca G, Azcón R (1994) Effects of ammonium and nitrate on the growth of vesicular arbuscular mycorrhizal Erythrina poeppigiana O I Cook seedlings. Biol Fertil Soils 18:249–254

    Article  Google Scholar 

  • Delgado R, Martin P, Álamo M, González MR (2004) Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilization rates. J Sci Food Agr 84:623–630

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Guo T, Zhang J, Christie P, Li X (2006) Effects of arbuscular mycorrhizal fungi and ammonium: nitrate ratios on growth and pungency of onion seedlings. J Plant Nutr 29:1047–1059

    Article  CAS  Google Scholar 

  • Hamza A (1981) Wirkung von vesiculär-arbuskulären Mycorrhiza auf Baumwolle in Abhängigkeit von NaCl im Boden. Diss. Univ. Gõttingen

  • Hawkins HJ, George E (2001) Reduced 15N nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition. Ann Bot 87:303–311

    Article  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Jackson ML (1960) Soil chemical analysis. Prentice Hall, Engwood

    Google Scholar 

  • Johansen A (1999) Depletion of soil mineral N by roots of Cucumis sativus L-colonized or not by arbuscular mycorrhizal fungi. Plant Soil 209:119–127

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesicular–arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70

    Article  CAS  Google Scholar 

  • Jumpponen A, Trowbridge J, Mandyam K, Johnson L (2005) Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition—evidence from rDNA data. Biol Fertil Soils 41:217–224

    Article  CAS  Google Scholar 

  • Karagiannidis N, Nikolaou N (1999) Arbuscular mycorrhizal root infection as an important factor of grapevine nutrition status. Multivariate analysis application for evaluation and characterization of the soil and leaf parameters. Agrochimica 43:151–165

    CAS  Google Scholar 

  • Karagiannidis N, Nikolaou N (2000) Influence of arbuscular mycorrhizae on heavy metal (Rb and Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am J Enol Viticult 51:269–275

    CAS  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1984) Growth and nutrient uptake of peanut inoculated with the mycorrhizal fungus Glomus fasciculatum compared with non-inoculated ones. Plant Soil 77:405–408

    Article  CAS  Google Scholar 

  • Loulakakis K, Primikirios NI, Nikolantonakis MA, Roubelakis-Angelakis KA (2002) Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase, and its spatial and temporal changes during leaf development. Planta 215:630–638

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

    Article  Google Scholar 

  • Márquez AJ, Betti M, Garcia-Calderón M, Pal’ove-Balang P, Diaz P, Monza J (2005) Nitrate assimilation in Lotus japonicus. J Exp Bot 417:1741–1749

    Article  Google Scholar 

  • Marschner H (1997) Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Miller AE, Bowman WD (2002) Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia 130:609–616

    Article  PubMed  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  Google Scholar 

  • Mortimer PE, Archer E, Valentine AJ (2005) Mycorrhizal C costs and nutritional benefits in developing grapevines. Mycorrhiza 15:159–165

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou N, Angelopoulos K, Karagiannidis N (2003) Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine, grafted onto various rootstocks. Expl Agric 39:241–252

    Article  Google Scholar 

  • Ortas I, Harris PJ, Rowell DL (1996) Enhanced uptake of phosphorus by mycorrhizal sorghum plants as influenced by forms of nitrogen. Plant Soil 184:255–264

    Article  CAS  Google Scholar 

  • Paczek V, Dubois F, Sangwan R, Morot-Gaudry JF, Roubelakis-Angelakis KA, Hirel B (2002) Cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase in grapes gives new insights on the regulation of carbon and nitrogen metabolism. Planta 216:245–254

    Article  CAS  PubMed  Google Scholar 

  • Pereira EG, Siqueira JO, Dovale FR, Moreira FMS (1996) Influence of mineral nitrogen on growth and mycorrhizal colonization of tree seedlings. Pesq Agropec Brasileira 31:653–662

    Google Scholar 

  • Petgen M, Schropp A, George E, Romheld V (1998) Influence of different inoculum places of the mycorrhizal fungus Glomus mosseae on mycorrhizal colonization in grapevine rootstocks (Vitis sp.). Vitis 37:99–105

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Possingham JV, Groot Obbink J (1971) Endotrophic mycorrhiza and the nutrition of grape vines. Vitis 10:120–130

    Google Scholar 

  • Powell CLl, Bagyaraj DJ (1984) VA mycorrhiza. CRC, Boca Raton, FL

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Scheurwater I, Koren M, Lambers H, Atkin OK (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J Exp Bot 53:635–1642

    Article  Google Scholar 

  • Schreiner RP (2003) Mycorrhizal colonization of grapevine rootstocks under field conditions. Am J Enol Vitic 54:143–149

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Spayd SE, Wample RL, Evans RG, Stevens RG, Seymour BJ, Nagel CW (1994) Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am J Enol Vitic 45:34–42

    CAS  Google Scholar 

  • Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303–310

    Article  CAS  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York, NY (10016)

    Google Scholar 

  • Tu C, Booker FL, Watson DM, Chen X, Rufty TW, Shi W, Hu S (2006) Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Glob Change Biol 12:793–803

    Article  Google Scholar 

  • Waschkies C, Schropp A, Marschner H (1994) Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent Pseudomonas and endomycorrhizal fungi. Plant Soil 162:219–227

    Article  Google Scholar 

  • Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635

    Article  PubMed  Google Scholar 

  • Yoshida LC, Allen EB (2001) Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. Am J Bot 88:1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Zerihun A, Treeby MT (2002) Biomass distribution and nitrate assimilation in response to N supply for Vitis vinifera L. cv. Cabernet Sauvignon on five Vitis rootstock genotypes. Aust J Grape Wine R 8:157–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Karagiannidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karagiannidis, N., Nikolaou, N., Ipsilantis, I. et al. Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza 18, 43–50 (2007). https://doi.org/10.1007/s00572-007-0153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-007-0153-2

Keywords

Navigation