Skip to main content

Advertisement

Log in

Involvement of AQP6 in the Mercury-Sensitive Osmotic Lysis of Rat Parotid Secretory Granules

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In secretory granules and vesicles, membrane transporters have been predicted to permeate water molecules, ions and/or small solutes to swell the granules and promote membrane fusion. We have previously demonstrated that aquaporin-6 (AQP6), a water channel protein, which permeates anions, is localized in rat parotid secretory granules (Matsuki-Fukushima et al., Cell Tissue Res 332:73–80, 2008). Because the localization of AQP6 in other organs is restricted to cytosolic vesicles, the native function or functions of AQP6 in vivo has not been well determined. To characterize the channel property in granule membranes, the solute permeation-induced lysis of purified secretory granules is a useful marker. To analyze the role of AQP6 in secretory granule membranes, we used Hg2+, which is known to activate AQP6, and investigated the characteristics of solute permeability in rat parotid secretory granule lysis induced by Hg2+ (Hg lysis). The kinetics of osmotic secretory granule lysis in an iso-osmotic KCl solution was monitored by the decay of optical density at 540 nm using a spectrophotometer. Osmotic secretory granule lysis was markedly facilitated in the presence of 0.5–2.0 μM Hg2+, concentrations that activate AQP6. The Hg lysis was completely blocked by β-mercaptoethanol which disrupts Hg2+-binding, or by removal of chloride ions from the reaction medium. An anion channel blocker, DIDS, which does not affect AQP6, discriminated between DIDS-insensitive and sensitive components in Hg lysis. These results suggest that Hg lysis is required for anion permeability through the protein transporter. Hg lysis depended on anion conductance with a sequence of NO3  > Br > I > Cl and was facilitated by acidic pH. The anion selectivity for NO3 and the acidic pH sensitivity were similar to the channel properties of AQP6. Taken together, it is likely that AQP6 permeates halide group anions as a Hg2+-sensitive anion channel in rat parotid secretory granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnaoutova I, Cawley NX, Patel N, Kim T, Rathod T, Loh YP (2008) Aquaporin 1 is important for maintaining secretory granule biogenesis in endocrine cells. Mol Endocrinol 22:1924–1934

    Article  PubMed  CAS  Google Scholar 

  • Calamita G, Moreno M, Ferri D, Silvestri E, Roberti P, Schiavo L, Gena P, Svelto M, Goglia F (2007) Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitochondria. J Endocrinol 192:111–120

    Article  PubMed  CAS  Google Scholar 

  • Frigeri A, Gropper MA, Turck CW, Verkman AS (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci USA 92:4328–4331

    Article  PubMed  CAS  Google Scholar 

  • Fujita-Yoshigaki J, Dohke Y, Hara-Yokoyama M, Kamata Y, Kozaki S, Furuyama S, Sugiya H (1996) Vesicle-associated membrane protein 2 is essential for cAMP-regulated exocytosis in rat parotid acinar cells. The inhibition of cAMP-dependent amylase release by botulinum neurotoxin B. J Biol Chem 271:13130–13134

    Article  PubMed  CAS  Google Scholar 

  • Gasser KW, Hopfer U (1990) Chloride transport across the membrane of parotid secretory granules. Am J Physiol 259:C413–C420

    PubMed  CAS  Google Scholar 

  • Gasser KW, DiDomenico J, Hopfer U (1988) Potassium transport by pancreatic and parotid zymogen granule membranes. Am J Physiol 255:C705–C711

    PubMed  CAS  Google Scholar 

  • Gasser KW, Goldsmith A, Hopfer U (1990) Regulation of chloride transport in parotid secretory granules by membrane fluidity. Biochemistry 29:7282–7288

    Article  PubMed  CAS  Google Scholar 

  • Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230

    Article  PubMed  CAS  Google Scholar 

  • Iandiev I, Dukic-Stefanovic S, Hollborn M, Pannicke T, Hartig W, Wiedemann P, Reichenbach A, Bringmann A, Kohen L (2011) Immunolocalization of aquaporin-6 in the rat retina. Neurosci Lett 490:130–134

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  PubMed  CAS  Google Scholar 

  • Jeremic A, Cho WJ, Jena BP (2005) Involvement of water channels in synaptic vesicle swelling. Exp Biol Med (Maywood) 230:674–680

    CAS  Google Scholar 

  • Laforenza U, Gastaldi G, Polimeni M, Tritto S, Tosco M, Ventura U, Scaffino MF, Yasui M (2009) Aquaporin-6 is expressed along the rat gastrointestinal tract and upregulated by feeding in the small intestine. BMC Physiol 9:18

    Article  PubMed  Google Scholar 

  • Lee MD, Bhakta KY, Raina S, Yonescu R, Griffin CA, Copeland NG, Gilbert DJ, Jenkins NA, Preston GM, Agre P (1996) The human aquaporin-5 gene. Molecular characterization and chromosomal localization. J Biol Chem 271:8599–8604

    Article  PubMed  CAS  Google Scholar 

  • Lopez IA, Ishiyama G, Lee M, Baloh RW, Ishiyama A (2007) Immunohistochemical localization of aquaporins in the human inner ear. Cell Tissue Res 328:453–460

    Article  PubMed  CAS  Google Scholar 

  • Matsuki M, Hashimoto S, Shimono M, Murakami M, Fujita-Yoshigaki J, Furuyama S, Sugiya H (2005) Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J Membr Biol 203:119–126

    Article  PubMed  CAS  Google Scholar 

  • Matsuki-Fukushima M, Hashimoto S, Shimono M, Satoh K, Fujita-Yoshigaki J, Sugiya H (2008) Presence and localization of aquaporin-6 in rat parotid acinar cells. Cell Tissue Res 332:73–80

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K (2008) Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 22:3672–3684

    Article  PubMed  CAS  Google Scholar 

  • Promeneur D, Kwon TH, Yasui M, Kim GH, Frokiaer J, Knepper MA, Agre P, Nielsen S (2000) Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. Am J Physiol Renal Physiol 279:F1014–F1026

    PubMed  CAS  Google Scholar 

  • Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 270:1908–1912

    Article  PubMed  CAS  Google Scholar 

  • Roussa E, Wittschen P, Wolff NA, Torchalski B, Gruber AD, Thevenod F (2010) Cellular distribution and subcellular localization of mCLCA1/2 in murine gastrointestinal epithelia. J Histochem Cytochem 58:653–668

    Article  PubMed  CAS  Google Scholar 

  • Taguchi D, Takeda T, Kakigi A, Okada T, Nishioka R, Kitano H (2008) Expression and immunolocalization of aquaporin-6 (Aqp6) in the rat inner ear. Acta Otolaryngol 128:832–840

    Article  PubMed  CAS  Google Scholar 

  • Thevenod F, Gasser KW, Hopfer U (1990) Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules. Biochem J 272:119–126

    PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999a) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999b) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by a Nihon University Multidisciplinary research grant for 2009, a Grant-in-Aid for Young Researcher Scientists, Nihon University School of Dentistry at Matsudo (2010-018 and 2011-001), and a JSPS KAKENHI Grant Number (24791986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miwako Matsuki-Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuki-Fukushima, M., Fujita-Yoshigaki, J., Murakami, M. et al. Involvement of AQP6 in the Mercury-Sensitive Osmotic Lysis of Rat Parotid Secretory Granules. J Membrane Biol 246, 209–214 (2013). https://doi.org/10.1007/s00232-012-9522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9522-7

Keywords

Navigation