Skip to main content
Log in

Ocean acidification: synergistic inhibitory effects of protons and heavy metals on 45Ca uptake by lobster branchiostegite membrane vesicles

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Previous work with isolated outer membrane vesicles of lobster branchiostegite epithelial cells has shown that 45Ca2+ uptake by these structures is significantly (p < 0.02) reduced by an incremental decrease in saline pH (increased proton concentration) and that this decrease is due to competitive inhibition between carrier-mediated transport of 45Ca2+ and hydrogen ions. The present paper extends these previous findings and describes the combined effects of pH and cationic heavy metals on branchiostegite uptake of 45Ca2+. Partially purified membrane vesicles of branchiostegite cells were produced by a homogenization/centrifugation method and were loaded with mannitol at pH 7.0. The time course of 1 mM 45Ca2+ uptake in a mannitol medium at pH 8.5 containing 100 µM verapamil (Ca2+ channel blocker) was hyperbolic and approached equilibrium at 30 min. This uptake was either significantly reduced (p < 0.05) by the addition of 5 µM Zn2+ or essentially abolished with the addition of 5 µM Cu2+. Increasing zinc concentrations (5–500 µM) reduced 1 mM 45Ca2+ uptake at pH 8.5 or 7.5 in a hyperbolic fashion with the remaining non-inhibited uptake due to apparent non-specific binding. Uptake of 1 mM 45Ca2+ at pH 8.5, 7.5, 7.5 + Zn2+, and 7.5 + Zn2+ + Cu2+ + Cd2+ in the presence of 100 µM verapamil displayed a stepwise reduction of 45Ca2+ uptake with the addition of each treatment until only non-specific isotope binding occurred with all cation inhibitors. 45Ca2+ influxes (15 s uptakes; 0.25–5.0 mM calcium + 100 µM verapamil) in the presence and absence of 10 µM Zn2+ were both hyperbolic functions of calcium concentration. The curve with Zn2+ displayed a transport Km twice that of the control (p < 0.05), while inhibitor and control curve Jmax values were not significantly different (p > 0.05), suggesting competitive inhibition between 45Ca2+ and Zn2+ influxes. Analysis of the relative inhibitory effects of increased proton or heavy metal interaction with 45Ca2+ uptake suggests that divalent metals may reduce the calcium transport about twice as much as a drop in pH, but together, they appear to abolish carrier-mediated transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahearn GA (1996) The invertebrate electrogenic 2Na+/1H+ exchanger: polyfunctional epithelial workstation. News Physiol Sci 11:31–35

    CAS  Google Scholar 

  • Ahearn GA, Clay LP (1989) Kinetic analysis of electrogenic 2Na/1H antiport in crustacean hepatopancreas. Am J Physiol 257:R484–R493

    CAS  PubMed  Google Scholar 

  • Ahearn GA, Franco P (1990) Sodium and calcium share the electrogenic 2Na+-1H+ antiporter in crustacean antennal glands. Am J Physiol 259:F758–F767

    CAS  PubMed  Google Scholar 

  • Ahearn GA, Franco P (1993) Ca2+ transport pathways in brush-border membrane vesicles of crustacean antennal glands. Am J Physiol 264:R1206–R1213

    CAS  PubMed  Google Scholar 

  • Ahearn GA, Zhuang Z (1996) Cellular mechanisms of calcium transport in crustaceans. Physiol Zool 69(2):383–402

    Article  CAS  Google Scholar 

  • Ahearn GA, Mandel PK, Mandel A (2001) Biology of the 2Na+/1H+ antiporter in invertebrates. J Exp Zool 289:232–244

    Article  CAS  Google Scholar 

  • Aiken DE (1973) Proecdysis, setal development, and molt prediction in the American lobster (Homarus americanus). J Fish Res Board Can 30:1334–1337

    Article  Google Scholar 

  • Ansari TM, Marr IL, Tariq N (2004) Heavy metals in marine pollution perspective—a mini review. J Appl Sciences 4:1–20

    Article  Google Scholar 

  • Baltas H, Sirin M, Dalgic G, Bayrak EY, Akdeniz A (2017) Assessment of metal concentrations (Cu, Zn, and Pb) in seawater, sediment and biota samples in the coastal area of Eastern Black Sea. Turk Mar Pollut Bull 122:475–482

    Article  CAS  Google Scholar 

  • Bonga SEW, Flik G, Balm PHM, van der Meij JCA (1990) The ultrastructure of chloride cells in the gills of the teleost Oreochromis mossambicus during exposure to acidified water. Cell Tissue Res 259:575–585

    Article  Google Scholar 

  • Brierley AS, Kingsford MJ (2009) Impacts of climate change review on marine organisms and ecosystems. Current Biol 19:R602–R614

    Article  CAS  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114:E6089–E6096

    Article  CAS  Google Scholar 

  • Flik G, Haond C (2000) Na+ and Ca2+ pumps in the gills, epipodites and branchiostegites of the European lobster Homarus gammarus: effects of dilute seawater. J Exp Biol 203:213–220

    CAS  PubMed  Google Scholar 

  • Flik G, Verbost PM, Atsma WIM (1994) Calcium transport in gill plasma membranes of the crab Carcinus maenas: evidence for carriers driven by ATP and a Na+ gradient. J Exp Biol 195:109–122

    CAS  PubMed  Google Scholar 

  • Flik G, Verbost PM, Bonga SEW (1995) Calcium transport processes in fishes. In: Wood DM, Shuttleworth T (eds) Cellular and molecular approaches to fish ionic regulation. Academic Press, New York, pp 317–342

    Google Scholar 

  • Freire CA, Onken H, McNamara JC (2008) A structure-function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol Part a 151:272–304

    Article  Google Scholar 

  • Gao Y, Wheatly MG (2004) Characterization and expression of plasma membrane Ca2+ ATPase (PMCA3) in the crayfish, Procambarus clarkia antennal gland during molting. J Exp Biol 207:2991–3002

    Article  CAS  Google Scholar 

  • Glover CN, Wood CM (2005) Physiological characterization of a pH- and calcium-dependent sodium uptake mechanism in the freshwater crustacean, Daphnia magna. J Exp Biol 208:951–959

    Article  CAS  Google Scholar 

  • Henry R, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3(431):1–33

    Google Scholar 

  • Hobe H, Laurent P (1984) Whole body calcium flux rates in freshwater teleosts as a function of ambient calcium and pH levels: a comparison between the euryhaline trout, Salmo gairdneri and stenohaline bullhead, Ictalurus nebulosus. J Exp Biol 113:237–252

    Google Scholar 

  • Hogstrand C, Wilson RW, Polgar D, Wood CM (1994) Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterborne zinc. J Exp Biol 186:55–73

    CAS  PubMed  Google Scholar 

  • Hogstrand C, Verbost PM, Bonga SEW, Wood C (1996) Mechanisms of zinc uptake in gills of freshwater rainbow trout: interplay with calcium transport. Am J Physiol 270:R1141–R1147

    CAS  PubMed  Google Scholar 

  • Honisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  Google Scholar 

  • Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat intestine. J Biol Chem 248:25032

    Google Scholar 

  • Lucu C (1994) Calcium transport across isolated gill epithelium of Carcinus. J Exp Zool. https://doi.org/10.1002/jez.1402680502

    Article  Google Scholar 

  • Lucu C, Flik G (1999) Na+-K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. Am J Physiol 276:R490–R499

    CAS  PubMed  Google Scholar 

  • Lucu C, Obsersnel V (1996) Cadmiuim influx across isolated Carcinus gill epithelium. Interaction of lanthanum and calcium with cadmium influxes. J Comp Physiol B 166:184–189

    Article  CAS  Google Scholar 

  • Lucu C, Pavicic J, Ivankovic D, Pavicic-Hamer D, Najdek M (2008) Changes in Na+/K+-ATPase activity, unsaturated fatty acids and metallothioneins in gills of the shore crab Carcinus aestuarii after dilute seawater acclimation. Comp Biochem Physiol Part A 149:362–372

    Article  CAS  Google Scholar 

  • McDonald DG, Hobe H, Wood CM (1980) The influence of calcium on the physiological responses of the rainbow trout, Salmo gairdneri, to low environmental pH. J Exp Biol 88:109–131

    CAS  PubMed  Google Scholar 

  • Mostofa KMG, Liu C-Q, Zhai W, Minella M, Vione D, Gao K, Minakata D, Arakaki T, Yoshioka T, Hayakawa K, Konohira E, Tanoue E, Akhand A, Chanda A, Wang B, Sakugawa H (2016) Reviews and syntheses: ocean acidification and its potential impacts on marine ecosystems. Biogeosciences 13:1686–1767

    Article  Google Scholar 

  • Nagle L, Brown S, Krinos A, Ahearn GA (2018) Ocean acidification: effects of pH on 45Ca uptake by lobster branchiostegites. J Comp Physiol B 188:739–747

    Article  CAS  Google Scholar 

  • Ortega P, Custodio MR, Zanotto FP (2014) Characterization of cadmium plasma membrane transport in gills of a mangrove crab, Ucides cordatus. Aquat Toxicol 157:21–29

    Article  CAS  Google Scholar 

  • Pedersen TV, Bjerregaard P (1995) Calcium and cadmium fluxes across the gills of the shore crab, Carcinus maenas. Mar Pollut Bull 31:73–77

    Article  CAS  Google Scholar 

  • Piersol MC, Ahearn GA (2007) Absorption of tetraethylammonium (TEA+) by perfused lobster intestine. J Exp Zool 307A:176–186

    Article  CAS  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Sa MG, Baptista BB, Farah LS, Leite VP, Zanotto FP (2010) Calcium transport and homeostasis in gill cells of a freshwater crab Dilocarcinus pagei. J Comp Physiol B 180:313–321

    Article  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley, New York, p 957

    Google Scholar 

  • Spry DJ, Wood CM (1989) A kinetic method for the measurement of zinc influx in vivo in the rainbow trout, and the effects of waterborne calcium on flux rates. J Exp Biol 142:425–446

    Google Scholar 

  • Tan WH, Tair R, Ali SAM, Talibe A, Sualin F, Payus C (2016) Distribution of heavy metals in seawater and surface sediment in coastal areas of Tuaran, Sabah. Trans Sci Tech 3:114–122

    Google Scholar 

  • Verbost PM, Flik G, Lock RAC (1987) Cadmium inhibition of Ca2+ uptake in rainbow trout gills. Am J Physiol 253:R216–R221

    CAS  PubMed  Google Scholar 

  • Verbost PM, Flik G, Lock RAC, Bonga SEW (1988) Cadmium inhibits plasma membrane calcium transport. J Membr Biol 102:97–104

    Article  CAS  Google Scholar 

  • Verbost PM, van Rooij J, Flik G, Lock RAC, Bonga SEW (1989) The movement of cadmium through freshwater trout branchial epithelium and is interference with calcium transport. J Exp Biol 145:185–197

    CAS  Google Scholar 

  • Verbost PM, Schoenmakers THJM, Flik G, Bonga SEW (1994) Kinetics of ATP- and Na+-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater-adapted tilapia. J Exp Biol 186:95–108

    CAS  PubMed  Google Scholar 

  • Wheatly MC (1999) Calcium homeostasis in crustacea: the evolving role of branchial, renal, digestive and hypoderman epithelia. J Exp Zool 283:620–640

    Article  CAS  Google Scholar 

  • Wheatly MG, Weil JR, Douglas PB (1998) Isolation, visualization, characterization and osmotic reactivity of crayfish BLMV. Am J Physiol 274:R725–R734

    CAS  PubMed  Google Scholar 

  • Wheatly MG, Zanotto FP, Hubbard MG (2002) Calcium homeostasis in crustaceans: subcellular Ca dynamics. Comp Biochem Physiol B 132:163–178

    Article  CAS  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Progr Ser 430:257–271

    Article  CAS  Google Scholar 

  • Zhuang Z, Ahearn GA (1996) Ca2+ transport processes of lobster hepatopancreatic brush-border membrane vesicles. J Exp Biol 199:1195–1208

    CAS  PubMed  Google Scholar 

  • Zhuang Z, Ahearn GA (1998) Energized Ca2+ transport by hepatopancreatic basolateral plasma membranes of Homarus americanus. J Exp Biol 201:211–220

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Ahearn.

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Husovic, A., Ali, L. et al. Ocean acidification: synergistic inhibitory effects of protons and heavy metals on 45Ca uptake by lobster branchiostegite membrane vesicles. J Comp Physiol B 189, 513–521 (2019). https://doi.org/10.1007/s00360-019-01227-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-019-01227-7

Keywords

Navigation