Skip to main content

Advertisement

Log in

Immunohistochemical localization of aquaporins in the human inner ear

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We report the immunolocalization of aquaporins (AQPs) 1, 4, and 6 in the human auditory and vestibular endorgans. A rapid protocol was applied to audiovestibular endorgans microdissected from postmortem human temporal bones from six subjects (ages ranging from 75 to 97 years) with no history of audiovestibular disease. Temporal bones were fixed in formalin, and the endorgans were immediately microdissected. Cryostat sections were obtained from audiovestibular endorgans and were subjected to double-immunohistochemical staining with antibodies against AQPs and several cellular markers. In the human cochlea, AQP1 immunoreactivity was localized to the fibrocytes of the spiral ligament and the sub-basilar tympanic cells; AQP4 immunoreactivity was localized to the outer sulcus cells, Hensen’s cells, and Claudius’ cells; AQP6 immunoreactivity was localized to the apical portion of interdental cells in the spiral limbus. In the vestibular endorgans (macula utriculi and cristae), AQP1 was localized to fibrocytes and blood vessels of the underlying stroma and trabecular perilymphatic tissue; AQP4 immunoreactivity was localized to the basal pole of vestibular supporting cells; AQP6 was localized to the apical portion of vestibular supporting cells. Cochlear and vestibular hair cells and nerve fibers were not immunoreactive for any AQP. Supporting cells were identified with antibodies against glial fibrilar acidic protein. Nerve fibers and terminals were identified with antibodies against neurofilaments and Na+K+ATPase. The high degree of conservation of AQP expression in the human inner ear suggests that AQPs play a critical role in inner ear water homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agre P, Kozone D (2003) Aquaporin water channels: molecular mechanism for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  • Agre P, King LS, Yasui M, Giggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol (Lond) 542:3–16

    Article  CAS  Google Scholar 

  • Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Andrews JC (2004) Intralabyrinthine fluid dynamics: Meniere’s disease. Cur Opin Otolaryngol Head Neck Surg 12:408–412

    Article  Google Scholar 

  • Baloh RW (2001) Prosper Meniere and his disease. Arch Neurol 58:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Kumagami H, Krippeit-Drews P, Ruppersberg JP, Schultz JE (1999) Expression pattern of AQP water channels in the inner ear of the rat. The molecular basis for a water regulation system in the endolymphatic sac. Hear Res 132:76–84

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Zenner HP, Schultz JE (2003) AQP-mediated fluid regulation in the inner ear. Cell Mol Neurobiol 23:315–329

    Article  PubMed  CAS  Google Scholar 

  • Boassa D, Yool AJ (2005) Physiological roles of aquaporins in the choroid plexus. Curr Top Dev Biol 67:181–206

    PubMed  CAS  Google Scholar 

  • Couloigner V, Berrebi D, Teixeira M, Paris R, Florentin A, Bozorg GA, Cluqeaud F, Sterkers O, Peuchmaur M, Ferrary E (2004) Aquaporin-2 in the human endolymphatic sac. Acta Otolaryngol 124:449–453

    Article  PubMed  CAS  Google Scholar 

  • Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, Fritzsch B (2000) EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron 26:417–430

    Article  PubMed  CAS  Google Scholar 

  • Engel A, Fujiyoshi Y, Agree P (2000) The importance of AQP water channel proteins structures. EMBO J 19:800–806

    Article  PubMed  CAS  Google Scholar 

  • Fukushima M, Kitahara T, Fuse Y, Uno Y, Doi K, Kubo T (2004) Changes in AQP expression in the inner ear of the rat after i.p. injection of steroids. Acta Otolaryngol Suppl 553:13–17

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JE, Lars-Goran J (1976) Microdisection and surface preparation of the inner ear. In: Smith CA, Vernon JA (eds) Handbook of auditory and vestibular research methods. Thomas, Springfield, pp 5–51

    Google Scholar 

  • Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Chem 17:99–124

    Article  CAS  Google Scholar 

  • Huang D, Chen P, Chen S, Nagura M, Lim DJ, Lin X (2002) Expression patterns of AQPs in the inner ear: evidence for concerted actions of multiple types of AQPs to facilitate water transport in the cochlea. Hearing Res 165:85–95

    Article  CAS  Google Scholar 

  • Ishiyama G, Lopez IA, Ishiyama A (2006) Aquaporins and Meniere’s disease. Curr Opin Otolaryngol Head and Neck Surg 14:332–336

    Article  Google Scholar 

  • Lars-Goran J, Hawkins JE (1972) Sensory and neural degeneration with aging as seen in microdissections of the human inner ear. Ann Otol 81:179–193

    Google Scholar 

  • Lee WS, Suarez C, Honrubia V, Gomez J (1990) Morphological aspects of the human vestibular nerve. Laryngoscope 100:756–764

    PubMed  CAS  Google Scholar 

  • Li J, Verkam AS (2001) Impaired hearing in mice lacking AQP-4 water channels. J Biol Chem 276:31233–31237

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Kozono D, Kato Y, Agre P, Hazama A, Yasui M (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci USA 102:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Lopez I, Ishiyama G, Baloh RW, Ishiyama A (2004) Aquaporins (water channel) expression in the human inner ear. Assoc Res Otolaryngol Abs 28:304

    Google Scholar 

  • Lopez I, Ishiyama G, Baloh RW, Ishiyama A (2005a) Morphological and immunohistochemical analysis of vestibular endorgans obtained from patients diagnosed with Meniere’s disease. In: Lim DJ (ed) Proc 5th International Symposium of Meniere’s disease and Inner Ear Homeostasis Disorders. Section 11: Pathogenesis/diagnosis (Clinical). House Ear Institute, Los Angeles, pp 122–123

    Google Scholar 

  • Lopez I, Ishiyama G, Tang Y, Frank M, Baloh RW, Ishiyama A (2005b) Estimation of the number of nerve fibers in the human vestibular endorgans using unbiased stereology and immunohistochemistry. J Neurosci Methods 145:37–46

    Article  PubMed  Google Scholar 

  • Merchant SN, Adams JC, Nadol JB Jr (2005) Pathophysiology of Meniere’s syndrome: are symptoms caused by endolymphatic hydrops. Otol Neurotol 26:74–81

    Article  PubMed  Google Scholar 

  • Merves M, Krane CM, Dou H, Greinwald JH, Menon AG, Choo D (2003) Expression of AQP 1 and 5 in the developing mouse inner ear and audiovestibular assessment of an AQp5 null mutant. JARO 4:264–275

    Google Scholar 

  • Mhatre AN, Steinbach S, Hribar K, Hoque AT, Lalwani AK (1999) Identification of aquaporins 5 (AQP5) within the cochlea: cDNA cloning and in situ localization. Biochem Biophys Res Commun 264:157–162

    Article  PubMed  CAS  Google Scholar 

  • Mhatre AN, Jero J, Chiappini I, Bolasco G, Barbara M, Lalwani AK (2002a) AQP-2 expression in the mammalian cochlea and investigation of its role in Meniere’s disease. Hearing Res 170:59–69

    Article  CAS  Google Scholar 

  • Mhatre AN, Stern RE, Li J, Lalwani AK (2002b) AQP 4 expression in the mammalian inner ear and its role in hearing. Biochem Biophys Res Commun 297:987–996

    Article  PubMed  CAS  Google Scholar 

  • Miyabe Y, Kikuchi T, Kobayashi T (2002) Comparative immunohistochemical localization of aquaporin-1 and aquaporin-4 in the cochlea of three different species of rodents. Tohoku J Exp Med 196:247–257

    Article  PubMed  Google Scholar 

  • Morris JK, Maklad A, Hansen LA, Feng F, Sorensen C, Lee KF, Macklin WB, Fritzsch B (2006) A disorganized innervation of the inner ear persists in the absence of ErB2. Brain Res 1091:186–199

    Article  PubMed  CAS  Google Scholar 

  • Nadol JB Jr (1996) Techniques for human temporal bone removal: information for the scientific community. Otolaryngol Head Neck Surg 115:298–305

    Article  PubMed  Google Scholar 

  • Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 18:2506–2519

    PubMed  CAS  Google Scholar 

  • Ottersen OP, Takumi Y, Matsubara A, Landsend AS, Laake JH, Usami S (1998) Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog Neurobiol 54:127–148

    Article  PubMed  CAS  Google Scholar 

  • Rio C, Dikkes P, Liberman MC, Corfas G (2002) Glial acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol 442:156–162

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, Takeda T, Kitano H, Takeuchi S, Kakigi A, Azuma H (2002) AQP-2 regulation by vasopressin in the rat inner ear. Neuroreport 13:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, Takeda T, Kitano H, Takeuchi S, Okada T, Ando M, Suzuki M, Kakigi A (2003) Aquaporin-1 (AQP-1) is expressed in the stria vascularis of the rat cochlea. Hear Res 181:15–19

    Article  PubMed  CAS  Google Scholar 

  • Schuknecht HF (1968) Temporal bone removal at autopsy. Preparation and uses. Arch Otolaryngol 87:129–137

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1993) Disorders of unknown or multiple causes. In: Schuknecht HF (ed) Pathology of the ear, 2nd edn. Lea and Febier, Philadelphia, pp 499–524

    Google Scholar 

  • Slepecky NB (1996) Cochlear structure. In: Dallos P, Popper AN, Fay R (eds) The cochlea. Springer, Heidelberg, pp 44–129

    Google Scholar 

  • Stankovic KM, Adams JC, Brown D (1995) Immunolocalization of AQP CHIP in the guinea pig inner ear. Am J Physiol 269:1450–1456

    Google Scholar 

  • Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and glutamate transporter GLAST in the rat vestibular endorgan. Neuroscience 79:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Takumi Y, Kagelhus EA, Eidet J, Matsubara A, Usami S, Shinkawa H, Nielsen S, Ottersen OP (1998) Select types of supporting cell in the inner ear express AQP-4 water channel protein. Eur J Neurosci 10:3584–3595

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Schacht J (1996) Homeostatic mechanisms in the cochlea. In: Dallos P, Popper AN, Fay RR (eds) The cochlea. Springer, Heidelberg, pp 130–185

    Google Scholar 

  • Weber PC, Cunningham CD 3rd, Schulte BA (2001) Potassium recycling pathways in the human cochlea. Laryngoscope 111:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Wright C, Meyerhoff WL (1989) Microdissection in the human temporal bone morphology. Ann Otol Rhinol Laryngol Suppl 143:25–28

    Google Scholar 

  • Yamashita H, Sekitani T, Moriya T, Bagger-Sjoback D (1993) Glial fibrilar acidic protein-like immunoreactivity in the human fetal inner ear. Acta Otolaryngol (Stockh) Suppl 506:18–23

    CAS  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  PubMed  CAS  Google Scholar 

  • Zelenina M, Zelenin S, Aperia A (2005) Water channels (aquaporins) and their role for postnatal adaptation. Pediatr Res 57:47–53

    Article  Google Scholar 

  • Zhong SX, Liu ZH (2003) Expression of AQPs in the cochlea and endolymphatic sac of guinea pig. ORL J Otorhinolaryngol Relat Spec 65:284–289

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ishiyama.

Additional information

The National Institutes of Health (grants AG09693-10, DC005224, 00140-02, and DC05187-01) supported this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, I.A., Ishiyama, G., Lee, M. et al. Immunohistochemical localization of aquaporins in the human inner ear. Cell Tissue Res 328, 453–460 (2007). https://doi.org/10.1007/s00441-007-0380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0380-z

Keywords

Navigation