Skip to main content

Advertisement

Log in

Presence and localization of aquaporin-6 in rat parotid acinar cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are integral membrane proteins that function as channels for the transfer of water and small solutes across membranes. In mammalian cells, 13 isoforms (AQP0-12) have been identified, and these exhibit unique patterns of expression in various cell types and tissues. Among these isoforms, AQP6 is considered to function not as water channel, but as an anion channel. We investigated the presence and localization of AQP6 in rat parotid acinar cells. AQP6 mRNA was detected in these cells by using reverse transcription/polymerase chain reaction, and Western blotting analysis identified a protein band that reacted with an anti-AQP6 antibody in the membrane fraction and secretory granule membrane. In order to localize AQP6, we used the anti-AQP6 antibody for histological immunodetection. Under confocal microscopy, we observed positive immunoreactions near the tight junctions of parotid acinar cells. Immunolabeling of ultrathin cryosections detected AQP6 near tight junctions and around secretory granule membranes. Immunoelectron microscopy confirmed the presence of AQP6 in the membranes of isolated secretory granules. These results suggest that AQP6 participates in water and anion transport in plasma membranes near tight junctions and secretory granule membranes in rat parotid acinar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol (Lond) 542:3–16

    Article  CAS  Google Scholar 

  • Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332:593–610

    PubMed  CAS  Google Scholar 

  • Beitz E, Liu K, Ikeda M, Guggino WB, Agre P, Yasui M (2006) Determinants of AQP6 trafficking to intracellular sites versus the plasma membrane in transfected mammalian cells. Biol Cell 98:101–109

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Capurro C, Rivarola V, Kierbel A, Escoubet B, Farman N, Blot-Chabaud M, Parisi M (2001) Vassopressin regulates water flow in a rat cortical collecting duct cell line not containing known aquaporins. J Membr Biol 179:63–70

    Article  PubMed  CAS  Google Scholar 

  • Cho SJ, Sattar AK, Jeong EH, Satchi M, Cho JA, Dash S, Mayes MS, Stromer MH, Jena BP (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA 99:4720–4724

    Article  PubMed  CAS  Google Scholar 

  • Dannies PS (2002) Mechanisms for storage of prolactin and growth hormone in secretory granules. Mol Genet Metab 76:6–13

    Article  PubMed  CAS  Google Scholar 

  • Delporte C, Steinfeld S (2006) Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta 1758:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Dohke Y, Fujita-Yoshigaki J, Sugiya H, Furuyama S, Hara-Yokoyama M (2002) Involvement of phospholipase D in exocytotic release of amylase from rat parotid acinar cells upon β-adrenergic receptor stimulation. Biochem Biophys Res Commun 299:663–668

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DB (1975) Salivary glands and saliva. In: Lavelle CLB (ed) Applied physiology of the mouth. Wright, Bristol, pp 145–179

    Google Scholar 

  • Fernandez JM, Villalon M, Verdugo P (1991) Reversible condensation of mast cell secretory products in vitro. Biophys J 59:1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Funaki H, Yamamoto T, Koyama Y, Kondo D, Yaoita E, Kawasaki K, Kobayashi H, Sawaguchi S, Abe H, Kihara I (1998) Localization and expression of AQP5 in cornea, serous salivary glands, and pulmonary epithelial cells. Am J Physiol 275:C1151–C1157

    PubMed  CAS  Google Scholar 

  • Gasser KW, Hopfer U (1990) Chloride transport across the membrane of parotid secretory granules. Am J Physiol 259:C413–C420

    PubMed  CAS  Google Scholar 

  • Gasser KW, DiDomenico J, Hopfer U (1988) Secretagogues activate chloride transport pathways in pancreatic zymogen granules. Am J Physiol 254:G93–G99

    PubMed  CAS  Google Scholar 

  • Gasser KW, Goldsmith A, Hopfer U (1990) Regulation of chloride transport in parotid secretory granules by membrane fluidity. Biochemistry 29:7282–7288

    Article  PubMed  CAS  Google Scholar 

  • Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S, Case RM, Steward MC (2001) Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 281:G247–G254

    PubMed  CAS  Google Scholar 

  • Gresz V, Kwon TH, Gong H, Agre P, Steward MC, King LS, Nielsen S (2004) Immunolocalization of AQP-5 in rat parotid and submandibular salivary glands after stimulation or inhibition of secretion in vivo. Am J Physiol Gastrointest Liver Physiol 287:G151–G161

    Article  PubMed  CAS  Google Scholar 

  • Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230

    Article  PubMed  CAS  Google Scholar 

  • He X, Tse CM, Donowitz M, Alper SL, Gabriel SE, Baum BJ (1997) Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflügers Arch 433:260–268

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Almasri E, Ruiz WG, Apodaca G, Zeidel ML (2005) Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation. Am J Physiol Cell Physiol 289:C33–C41

    Article  PubMed  CAS  Google Scholar 

  • Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflügers Arch 448:181–186

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  PubMed  CAS  Google Scholar 

  • Jena BP (2004) Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J Cell Mol Med 8:1–21

    Article  PubMed  CAS  Google Scholar 

  • Jeremic A, Cho WJ, Jena BP (2005) Involvement of water channels in synaptic vesicle swelling. Exp Biol Med 230:674–680

    CAS  Google Scholar 

  • Kelly ML, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP (2004) Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716

    Article  PubMed  CAS  Google Scholar 

  • Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, Menon AG (2001) Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 276:23413–23420

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen B (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Frigeri A, Skach W, Verkman AS (1993) Cloning of a novel rat kidney cDNA homologous to CHIP28 and WCH-CD water channels. Biochem Biophys Res Commun 197:654–659

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274:20071–20074

    Article  PubMed  CAS  Google Scholar 

  • Matsuki M, Hashimoto S, Shimono M, Murakami M, Fujita-Yoshigaki J, Furuyama S, Sugiya H (2005) Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J Membr Biol 203:119–126

    Article  PubMed  CAS  Google Scholar 

  • Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  PubMed  CAS  Google Scholar 

  • Ohshiro K, Yaoita E, Yoshida Y, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Yamamoto T (2001) Expression and immunolocalization of AQP6 in intercalated cells of the rat kidney collecting duct. Arch Histol Cytol 64:329–338

    Article  PubMed  CAS  Google Scholar 

  • Parvin MN, Kurabuchi S, Murdiastuti K, Yao C, Kosugi-Tanaka C, Akamatsu T, Kanamori N, Hosoi K (2005) Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner’s gland of the rat duodenum. Am J Physiol Gastrointest Liver Physiol 288:G1283–G1291

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C (2001) Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogren’s syndrome patients. Lab Invest 81:143–148

    PubMed  CAS  Google Scholar 

  • Sugiya H, Matsuki M (2006) AQPs and control of vesicle volume in secretory cells. J Membr Biol 210:155–159

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 283:C651–C672

    PubMed  Google Scholar 

  • Thévenod F, Gasser KW, Hopfer U (1990) Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules. Biochem J 272:119–126

    PubMed  Google Scholar 

  • Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999a) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999b) Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Katsumi Tadokoro of Tokyo Dental College for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sugiya.

Additional information

This study was supported in part by a Nihon University Multidisciplinary Research Grant for 2006–2007, a Grant-in Aid for 2003–2007, a Multidisciplinary Research Project from MEXT, a Grant-in Aid for Scientific Research from JSPS (no. 16390534), and a Grant of Oral Health Science Center HRC7 from Tokyo Dental College.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuki-Fukushima, M., Hashimoto, S., Shimono, M. et al. Presence and localization of aquaporin-6 in rat parotid acinar cells. Cell Tissue Res 332, 73–80 (2008). https://doi.org/10.1007/s00441-007-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0558-4

Keywords

Navigation