Symbiont-dependent sexual reproduction in marine colonial invertebrate: morphological and molecular evidence

Abstract

The benefits of mutualistic associations between prokaryotes and their eukaryotic hosts lead to the evolution of adaptations that encourage the relationship in subsequent generations of the host. Symbiont-dependent host reproduction may play a key role in the maintenance of the association and persistence of the microbial symbiont in the host population. Recently, sexual reproduction in the marine bryozoan, Bugula neritina, was reported to be influenced by its defensive symbiont, “Candidatus Endobugula sertula”. It was proposed that the symbiont-produced predation-deterrent compound acts as a signal to affect female reproductive processes in the host colony. An anatomical comparison of female reproductive structures and oogenesis between symbiotic and symbiont-reduced colonies was performed. Colonies of two cryptic species of B. neritina, Type S and N, were collected in North Carolina and Virginia, USA over several seasons November 2014–December 2015. Relative expression of genes regulating the female reproductive processes in the host was also assessed. Interestingly, no anatomical or molecular differences were found although there were fewer sexual zooids in symbiont-reduced colonies. The lack of difference in oogenesis indicates that the symbiont does not affect female structures and functions in the zooid, but potentially influences early differentiation of female germinal cells. Histological investigation revealed previously undescribed ‘funicular bodies’ containing bacteria in the symbiotic colonies. However, the bacteria associated with the ‘funicular bodies’ and funicular strands in the symbiotic colonies were morphologically different, thus raising the question if the symbiont exists in pleomorphic forms depending on the tissue environment it is localized.

This is a preview of subscription content, log in to check access.

Fig. 1

Adapted from Coleman and Dunphy (1994), Eckberg et al. (1996), Voronina and Wessel (2003), Levasseur et al. (2013) and Adhikari and Liu (2014)

Fig. 2
Fig. 3
Fig. 4

References

  1. Aberdam E, Dekel N (1985) Activators of protein kinase C stimulate meiotic maturation of rat oocytes. Biochem Biophys Res Commun 132:570–574

    CAS  Article  Google Scholar 

  2. Adhikari D, Liu K (2014) The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382:480–487

    CAS  Article  Google Scholar 

  3. Akita Y (2008) Protein kinase Cε: multiple roles in the function of, and signaling mediated by, the cytoskeleton. FEBS J 275:3995–4004

    CAS  Article  Google Scholar 

  4. Avazeri N, Courtot A-M, Lefevre B (2004) Regulation of spontaneous meiosis resumption in mouse oocytes by various conventional PKC isozymes depends on cellular compartmentalization. J Cell Sci 117:4969–4978

    CAS  Article  Google Scholar 

  5. Best MA, Thorpe JP (1985) Autoradiographic study of feeding and the colonial transport of metabolites in the marine bryozoan Membranipora membranacea. Mar Biol 84:295–300

    Article  Google Scholar 

  6. Best MA, Thorpe JP (2002) Use of radioactive labelled food to assess the role of the funicular system in the transport of metabolites in the cheilostome bryozoan Membranipora membranacea (L.). In: Jackson PNW, Buttler CJ, Jones MS (eds) Bryozoan studies 2001. AA Balkema Publishers, Lisse/Abingdon/Exton/Tokyo, pp 29–35

    Google Scholar 

  7. Carle KJ, Ruppert E (1983) Comparative ultrastructure of the bryozoan funiculus: a blood vessel homologue. J Zool Syst Evol Res 21:181–193

    Article  Google Scholar 

  8. Chen JK, Heckert LL (2001) Dmrt1 expression is regulated by follicle-stimulating hormone and phorbol esters in postnatal sertoli cells. Endocrinology 142:1167–1178

    CAS  Article  Google Scholar 

  9. Coleman TR, Dunphy WG (1994) Cdc2 regulatory factors. Curr Opin Cell Biol 6:877–882

    CAS  Article  Google Scholar 

  10. Costache V, McDougall A, Dumollard R (2014) Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 450:1175–1181

    CAS  Article  Google Scholar 

  11. Davidson SK, Haygood MG (1999) Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus Endobugula sertula”. Biol Bull 196:273–280

    CAS  Article  Google Scholar 

  12. Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537

    CAS  Article  Google Scholar 

  13. De Vries DJ, Herald CL, Pettit GR, Blumberg PM (1988) Demonstration of sub-nanomolar affinity of bryostatin 1 for the phorbol ester receptor in rat brain. Biochem Pharmacol 37:4069–4073

    Article  Google Scholar 

  14. Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98:6247–6252

    CAS  Article  Google Scholar 

  15. Deguchi R, Takeda N, Stricker SA (2014) Calcium signals and oocyte maturation in marine invertebrates. Int J Dev Biol 59:271–280

    Article  Google Scholar 

  16. Dorée M, Hunt T (2002) From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner? J Cell Sci 115:2461–2464

    Google Scholar 

  17. Dube F, Golsteyn R, Dufresne L (1987) Protein kinase C and meiotic maturation of surf clam oocytes. Biochem Biophys Res Commun 142:1072–1076

    CAS  Article  Google Scholar 

  18. Dyrynda P, King P (1983) Gametogenesis in placental and non-placental ovicellate cheilostome Bryozoa. J Zool 200:471–492

    Article  Google Scholar 

  19. Dyrynda P, Ryland J (1982) Reproductive strategies and life histories in the cheilostome marine bryozoans Chartella papyracea and Bugula flabellata. Mar Biol 71:241–256

    Article  Google Scholar 

  20. Eckberg WR, Carroll AG (1987) Evidence for involvement of protein kinase C in germinal vesicle breakdown in Chaetopterus. Dev Growth Differ 29:489–496

    CAS  Article  Google Scholar 

  21. Eckberg WR, Szuts EZ, Carroll AG (1987) Protein kinase C activity, protein phosphorylation and germinal vesicle breakdown in Spisula oocytes. Dev Biol 124:57–64

    CAS  Article  Google Scholar 

  22. Eckberg WR, Johnson MR, Palazzo RE (1996) Regulation of maturation-promoting factor by protein kinase C in Chaetopterus oocytes. Invertebr Reprod Dev 30:71–79

    CAS  Article  Google Scholar 

  23. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    CAS  Article  Google Scholar 

  24. Fehlauer-Ale KH, Mackie JA, Lim-Fong GE, Ale E, Pie MR, Waeschenbach A (2014) Cryptic species in the cosmopolitan Bugula neritina complex (Bryozoa, Cheilostomata). Zool Scripta 43:193–205

    Article  Google Scholar 

  25. Feng X, Zhang J, Smuga-Otto K, Tian S, Yu J, Stewart R, Thomson JA (2012) Protein kinase C mediated extraembryonic endoderm differentiation of human embryonic stem cells. Stem Cells 30:461–470

    CAS  Article  Google Scholar 

  26. Haygood MG, Davidson SK (1997) Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of “Candidatus endobugula sertula”. Appl Environ Microbiol 63:4612–4616

    CAS  Google Scholar 

  27. Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    CAS  Google Scholar 

  28. Hillman K, Goodrich-Blair H (2016) Are you my symbiont? Microbial polymorphic toxins and antimicrobial compounds as honest signals of beneficial symbiotic defensive traits. Curr Opin Microbiol 31:184–190

    CAS  Article  Google Scholar 

  29. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    CAS  Article  Google Scholar 

  30. Hughes R, Manriquez P, Bishop J, Burrows M (2003) Stress promotes maleness in hermaphroditic modular animals. Proc Natl Acad Sci USA 100:10326–10330

    CAS  Article  Google Scholar 

  31. Kalive M, Faust JJ, Koeneman BA, Capco DG (2010) Involvement of the PKC family in regulation of early development. Mol Reprod Dev 77:95–104

    CAS  Google Scholar 

  32. Kollár P, Rajchard J, Balounová Z, Pazourek J (2014) Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol 52:237–242

    Article  Google Scholar 

  33. Kraft AS, Smith JB, Berkow RL (1986) Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci USA 83:1334–1338

    CAS  Article  Google Scholar 

  34. Kwon HB, Lee WK (1991) Involvement of protein kinase c in the regulation of oocyte maturation in amphibians Rana dybowskii. J Exp Zool 257:115–123

    CAS  Article  Google Scholar 

  35. Labbe J, Capony J, Caput D, Cavadore J, Derancourt J, Kaghad M, Lelias J, Picard A, Doree M (1989) MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J 8:3053

    CAS  Google Scholar 

  36. Lee PD, Sladek R, Greenwood CM, Hudson TJ (2002) Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12:292–297

    Article  Google Scholar 

  37. Levasseur M, Dumollard R, Chambon J-P, Hebras C, Sinclair M, Whitaker M, McDougall A (2013) Release from meiotic arrest in ascidian eggs requires the activity of two phosphatases but not CaMKII. Development 140:4583–4593

    CAS  Article  Google Scholar 

  38. Lew KK, Chritton S, Blumberg PM (1982) Biological responsiveness to the phorbol esters and specific binding of [3H]phorbol 12, 13-dibutyrate in the nematode Caenorhabditis elegans, a manipulable genetic system. Teratog Carcinog Mutagen 2:19–30

    CAS  Article  Google Scholar 

  39. Lindquist N (1996) Palatability of invertebrate larvae to corals and sea anemones. Mar Biol 126:745–755

    Article  Google Scholar 

  40. Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66:431–450

    Article  Google Scholar 

  41. Linneman J, Paulus D, Lim-Fong G, Lopanik NB (2014) Latitudinal variation of a defensive symbiosis in the Bugula neritina (Bryozoa) sibling species complex. PLoS One 9:e108783

    Article  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  Article  Google Scholar 

  43. Lopanik NB, Lindquist N, Targett N (2004) Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131–139

    Article  Google Scholar 

  44. Lutaud G (1969) La nature des corps funiculaires des cellularines, bryozoaires chilostomes. Arch Zool Exp Gen 110:2–30

    Google Scholar 

  45. Lutaud G (1985) Preliminary experiments on interzooidal metabolic transfer in anascan bryozoans. In: Nielsen C, Larwood GP (eds) Bryozoa: Ordovician to Recent. Olsen and Olsen, Fredensborg, pp 183–191

    Google Scholar 

  46. Martelli AM, Sang N, Borgatti P, Capitani S, Neri LM (1999) Multiple biological responses activated by nuclear protein kinase C. J Cell Biochem 74:499–521

    CAS  Article  Google Scholar 

  47. Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145. https://doi.org/10.1002/jez.1401770202

    CAS  Article  Google Scholar 

  48. Mathew M, Lopanik NB (2014) Host differentially expressed genes during association with its defensive endosymbiont. Biol Bull 226:152–163

    CAS  Article  Google Scholar 

  49. Mathew M, Bean KI, Temate-Tiagueu Y, Caciula A, Mandoiu II, Zelikovsky A, Lopanik NB (2016) Influence of symbiont-produced bioactive natural products on holobiont fitness in the marine bryozoan, Bugula neritina via protein kinase C (PKC). Mar Biol 163:1–17

    CAS  Article  Google Scholar 

  50. Mawatari S (1951) The natural history of a common fouling bryozoan, Bugula neritina (Linnaeus). Misc Rep Res Inst Nat Resour 20:47–54

    Google Scholar 

  51. McGovern TM, Hellberg ME (2003) Cryptic species, cryptic endosymbionts, and geographical variation in chemical defences in the bryozoan Bugula neritina. Mol Ecol 12:1207–1215

    CAS  Article  Google Scholar 

  52. Miles J, Harvell C, Griggs C, Eisner S (1995) Resource translocation in a marine bryozoan: quantification and visualization of 14C and 35S. Mar Biol 122:439–445

    Article  Google Scholar 

  53. Miwa J, Tabuse Y, Furusawa M, Yamasaki H (1982) Tumor promoters specifically and reversibly disturb development and behavior of Caenorhabditis elegans. J Cancer Res Clin Oncol 104:81–87

    CAS  Article  Google Scholar 

  54. Mondadori RG, Neves JP, Goncalves PBD (2008) Protein kinase C (PKC) role in bovine oocyte maturation and early embryo development. Anim Reprod Sci 107:20–29

    CAS  Article  Google Scholar 

  55. Moosbrugger M, Schwaha T, Walzl MG, Obst M, Ostrovsky AN (2012) The placental analogue and the pattern of sexual reproduction in the cheilostome bryozoan Bicellariella ciliata (Gymnolaemata). Front Zool 9:29

    Article  Google Scholar 

  56. Moran NA (2006) Symbiosis. Curr Biol 16:R866–R871

    CAS  Article  Google Scholar 

  57. Morgan DO (1999) Regulation of the APC and the exit from mitosis. Nat Cell Biol 1:E47–E53

    CAS  Article  Google Scholar 

  58. Murray AW, Solomon MJ, Kirschner MW (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339:280–286

    CAS  Article  Google Scholar 

  59. Nader N, Kulkarni RP, Dib M, Machaca K (2013) How to make a good egg!: the need for remodeling of oocyte Ca2+ signaling to mediate the egg-to-embryo transition. Cell Calcium 53:41–54

    CAS  Article  Google Scholar 

  60. Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498

    CAS  Article  Google Scholar 

  61. Ostrovsky AN (1998) Comparative studies of ovicell anatomy and reproductive patterns in Cribrilina annulata and Celleporella hyalina (Bryozoa : Cheilostomatida). Acta Zool 79:287–318

    Article  Google Scholar 

  62. Ostrovsky AN (2013a) Evolution of sexual reproduction in marine invertebrates: example of gymnolaemate bryozoans. Springer, Dordrecht

    Google Scholar 

  63. Ostrovsky AN (2013b) From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates. Evolution 67:1368–1382

    Google Scholar 

  64. Ostrovsky AN, Gordon DP, Lidgard S (2009) Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background. Mar Ecol Prog Ser 378:113–124

    Article  Google Scholar 

  65. Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C (2007) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777

    CAS  Article  Google Scholar 

  66. Reed C (1991) Bryozoa. In: Giese ACPJ, Pearse VB (eds) Reprod Mar Invertebr. The Boxwood Press, Pacific Grove, pp 85–245

    Google Scholar 

  67. Rose-Hellekant TA, Bavister BD (1996) Roles of protein kinase A and C in spontaneous maturation and in forskolin or 3-isobutyl-1-methylxanthine maintained meiotic arrest of bovine oocytes. Mol Reprod Dev 44:241–249

    CAS  Article  Google Scholar 

  68. Ruby E, Asato L (1993) Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol 159:160–167

    CAS  Article  Google Scholar 

  69. Sharp KH, Davidson SK, Haygood MG (2007) Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J 1:693–702

    Article  Google Scholar 

  70. Silén L (1945) The main features of the development of the ovum, embryo and ooecium in the ooecioferous Bryozoa Gymnolaemata. Ark Zool 35A:1–34

    Google Scholar 

  71. Sobinoff AP, Sutherland JM, McLaughlin EA (2013) Intracellular signalling during female gametogenesis. Mol Hum Reprod 19:265–278

    CAS  Article  Google Scholar 

  72. Stith BJ, Maller JL (1987) Induction of meiotic maturation in Xenopus oocytes by 12-O-tetradecanoylphorbol 13-acetate. Exp Cell Res 169:514–523

    CAS  Article  Google Scholar 

  73. Sudek S, Lopanik NB, Waggoner LE, Hildebrand M, Anderson C, Liu H, Patel A, Sherman DH, Haygood MG (2007) Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J Nat Prod 70:67–74

    CAS  Article  Google Scholar 

  74. Tamburri MN, Zimmer-Faust RK (1996) Suspension feeding: basic mechanisms controlling recognition and ingestion of larvae. Limnol Oceanogr 41:1188–1197

    Article  Google Scholar 

  75. Temate-Tiagueu Y, Seesi SA, Mathew M, Mandric I, Rodriguez A, Bean K, Cheng Q, Glebova O, Măndoiu I, Lopanik NB, Zelikovsky A (2016) Inferring metabolic pathway activity levels from RNA-Seq data. BMC Genom 17:493–503

    Article  Google Scholar 

  76. Temkin MH (1996) Comparative fertilization biology of gymnolaemate bryozoans. Mar Biol 127:329–339

    Article  Google Scholar 

  77. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    CAS  Article  Google Scholar 

  78. Toker A (1998) Signaling through protein kinase C. Front Biosci 3:1134–1147

    Article  Google Scholar 

  79. Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG (2010) Bryostatins: biological context and biotechnological prospects. Curr Opin Biotechnol 21:834–842

    CAS  Article  Google Scholar 

  80. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    CAS  Article  Google Scholar 

  81. Vermeij GJ (1978) Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge

    Google Scholar 

  82. Voronina E, Wessel GM (2003) The regulation of oocyte maturation. Curr Top Dev Biol 58:53–110

    CAS  Article  Google Scholar 

  83. Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:e114

    Article  Google Scholar 

  84. Wong YH, Arellano SM, Zhang HM, Ravasi T, Qian PY (2010) Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina. Proteome Sci 8:25

    Article  Google Scholar 

  85. Woollacott R (1981) Association of bacteria with bryozoan larvae. Mar Biol 65:155–158

    Article  Google Scholar 

  86. Woollacott R, Zimmer R (1972) Origin and structure of the brood chamber in Bugula neritina (Bryozoa). Mar Biol 16:165–170

    Google Scholar 

  87. Woollacott RM, Zimmer RL (1975) A simplified placenta like system for the transport of extraembryonic nutrients during embryogenesis of Bugula neritina (bryozoa). J Morphol 147:355–377

    Article  Google Scholar 

  88. Wourms J (1987) Oogenesis. In: Giese A, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates: general aspects: seeking unity in diversity. Boxwood Press, Pacific Grove, pp 50–178

    Google Scholar 

  89. Yamashita M, Mita K, Yoshida N, Kondo T (2000) Molecular mechanisms of the initiation of oocyte maturation: general and species-specific aspects. In: Meijer L, Jezequel A, Ducommun B (eds) Progress in cell cycle research. Kluwer Academic/Plenum, New York, pp 115–129

    Google Scholar 

  90. Zchori-Fein E, Borad C, Harari AR (2006) Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiol Entomol 31:164–169

    Article  Google Scholar 

Download references

Acknowledgements

We thank Niels Lindquist (The University of North Carolina-Chapel Hill’s Institute of Marine Sciences) for allowing us generous use of both wet and dry laboratory facilities. We thank staff at the various collection sites for allowing us access to the property for sample collection. We thank Dr. Robert Simmons, Director, Biological Imaging Core Facility at Georgia State University for mentoring and training MM on tissue processing and preparation for microscopy study. We also thank Jonathan Linneman for help in collection of B. neritina colonies and experimental data. We are thankful to two reviewers for comments that significantly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicole B. Lopanik.

Ethics declarations

Funding

This research was supported by the Georgia State University Research Foundation (to NBL). AO is/was financially supported by the Austrian Science Fund (FWF), stand-alone project P27933-B29 (studies on embryonic brooding), Russian Foundation for Basic Research (RFFI), research Grant 16-04-00243-a (studies on oogenesis), and Saint Petersburg State University, research Grants 1.38.233.2015 and 1.42.1099.2016 (studies on bacterial symbionts).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Human and animal rights

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Reviewed by Undisclosed experts.

Responsible Editor: J. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 165 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathew, M., Schwaha, T., Ostrovsky, A.N. et al. Symbiont-dependent sexual reproduction in marine colonial invertebrate: morphological and molecular evidence. Mar Biol 165, 14 (2018). https://doi.org/10.1007/s00227-017-3266-y

Download citation