Skip to main content

Advertisement

Log in

Phase Transitions, Logarithmic Sobolev Inequalities, and Uniform-in-Time Propagation of Chaos for Weakly Interacting Diffusions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we study the mean field limit of weakly interacting diffusions for confining and interaction potentials that are not necessarily convex. We explore the relationship between the large N limit of the constant in the logarithmic Sobolev inequality (LSI) for the N-particle system and the presence or absence of phase transitions for the mean field limit. We show that the non-degeneracy of the LSI constant implies uniform-in-time propagation of chaos and Gaussianity of the fluctuations at equilibrium. As byproducts of our analysis, we provide concise and, to our knowledge, new proofs of a generalised form of Talagrand’s inequality and of quantitative propagation of chaos by employing techniques from the theory of gradient flows, specifically the Riemannian calculus on the space of probability measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  2. Backhoff, J., Conforti, G., Gentil, I., Léonard, C.: The mean field Schrödinger problem: ergodic behavior, entropy estimates and functional inequalities. Probab. Theory Related Fields 178, 475–530 (2020). https://doi.org/10.1007/s00440-020-00977-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, vol. 348. Springer, New York (2013)

    MATH  Google Scholar 

  4. Bashiri, K., Menz, G.: Metastability in a continuous mean-field model at low temperature and strong interaction. Stochastic Process. Appl. 134, 132–173 (2021). https://doi.org/10.1016/j.spa.2020.12.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauerschmidt, R., Bodineau, T.: A very simple proof of the LSI for high temperature spin systems. J. Funct. Anal. 276, 2582–2588 (2019). https://doi.org/10.1016/j.jfa.2019.01.007

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, S., Menegaki, A.: Spectral gap in mean-field \({\cal{O} }(n)\)-model. Commun. Math. Phys. 380, 1361–1400 (2020). https://doi.org/10.1007/s00220-020-03908-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Benamou, J.-D., Brenier, Y.Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Stat. Phys. 138, 270–290 (2010). https://doi.org/10.1007/s10955-009-9908-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bresch, D., Jabin, P.-E., Wang, Z.: On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak–Keller–Segel model. C. R. Math. Acad. Sci. Paris 357, 708–720 (2019). https://doi.org/10.1016/j.crma.2019.09.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo, J.A., Delgadino, M.G., Pavliotis, G.A.: A \(\lambda \)-convexity based proof for the propagation of chaos for weakly interacting stochastic particles. J. Funct. Anal. 279, 108734 (2020). https://doi.org/10.1016/j.jfa.2020.108734

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo, J.A., Gvalani, R.S., Pavliotis, G.A., Schlichting, A.: Long-time behaviour and phase transitions for the McKean–Vlasov equation on the torus. Arch. Ration. Mech. Anal. 235, 635–690 (2020). https://doi.org/10.1007/s00205-019-01430-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrillo, J.A., Gvalani, R.S., Wu, J.: An invariance principle for gradient flows in the space of probability measures. arXiv e-prints arXiv:2010.00424 (2020)

  13. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19, 971–1018 (2003). https://doi.org/10.4171/RMI/376

    Article  MathSciNet  MATH  Google Scholar 

  14. Chavanis, P.H.: The Brownian mean field model. Eur. Phys. J. B 87, 33 (2014). https://doi.org/10.1140/epjb/e2014-40586-6

    Article  MathSciNet  Google Scholar 

  15. Chayes, L., Panferov, V.: The McKean–Vlasov equation in finite volume. J. Stat. Phys. 138, 351–380 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Conforti, G., Ripani, L.: Around the entropic Talagrand inequality. Bernoulli 26, 1431–1452 (2020). https://doi.org/10.3150/19-BEJ1163

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 152, 2nd edn. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781107295513

    Book  MATH  Google Scholar 

  18. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68 (1937)

    MathSciNet  MATH  Google Scholar 

  20. Delgadino, M.G., Gvalani, R.S., Pavliotis, G.A.: On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions. Arch. Rational Mech. Anal. 241, 1–58 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diaconis, P., Freedman, D.: Finite exchangeable sequences. Ann. Probab. 745–764 (1980)

  22. Dupaigne, L., Gentil, I., Zugmeyer, S.: Sobolev’s inequality under a curvature-dimension condition. arXiv preprint arXiv:2011.07840 (2020)

  23. Durmus, A., Eberle, A., Guillin, A., Zimmer, R.: An elementary approach to uniform in time propagation of chaos. Proc. Am. Math. Soc. 148, 5387–5398 (2020). https://doi.org/10.1090/proc/14612

    Article  MathSciNet  MATH  Google Scholar 

  24. Eberle, A.: Reflection coupling and Wasserstein contractivity without convexity. C. R. Math. Acad. Sci. Paris 349, 1101–1104 (2011). https://doi.org/10.1016/j.crma.2011.09.003

    Article  MathSciNet  MATH  Google Scholar 

  25. Eberle, A.: Reflection couplings and contraction rates for diffusions. Probab. Theory Related Fields 166, 851–886 (2016). https://doi.org/10.1007/s00440-015-0673-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Soc (2010)

    MATH  Google Scholar 

  27. Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean–Vlasov model. Stochastic Process. Appl. 71, 33–53 (1997). https://doi.org/10.1016/S0304-4149(97)00067-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gentil, I., Léonard, C., Ripani, L.: Dynamical aspects of the generalized Schrödinger problem via Otto calculus—a heuristic point of view. Rev. Mat. Iberoam. 36, 1071–1112 (2020). https://doi.org/10.4171/rmi/1159

    Article  MathSciNet  MATH  Google Scholar 

  30. Gentil, I., Léonard, C., Ripani, L., Tamanini, L.: An entropic interpolation proof of the HWI inequality. Stochastic Process. Appl. 130, 907–923 (2020). https://doi.org/10.1016/j.spa.2019.04.002

    Article  MathSciNet  MATH  Google Scholar 

  31. Georgii, H.O.: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, vol. 9, 2nd edn. Walter de Gruyter & Co., Berlin (2011). https://doi.org/10.1515/9783110250329

    Book  MATH  Google Scholar 

  32. Grunewald, N., Otto, F., Villani, C., Westdickenberg, M.G.: A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Stat. 45, 302–351 (2009). https://doi.org/10.1214/07-AIHP200

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Guillin, A., Bris, P.L., Monmarché, P.: Convergence rates for the Vlasov-Fokker–Planck equation and uniform in time propagation of chaos in non convex cases. arXiv preprint arXiv:2105.09070 (2021)

  34. Guillin, A., Liu, W., Wu, L., Zhang, C.: Uniform Poincaré and logarithmic Sobolev inequalities for mean field particles systems (2019)

  35. Gvalani, R.S., Schlichting, A.: Barriers of the McKean–Vlasov energy via a mountain pass theorem in the space of probability measures. J. Funct. Anal. 279(108720), 34 (2020). https://doi.org/10.1016/j.jfa.2020.108720

    Article  MathSciNet  MATH  Google Scholar 

  36. Hairer, M.: An Introduction to Stochastic PDEs. arXiv e-prints arXiv:0907.4178 (2009)

  37. Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Funct. Anal. 266, 6055–6157 (2014). https://doi.org/10.1016/j.jfa.2014.02.030

    Article  MathSciNet  MATH  Google Scholar 

  38. Helffer, B.: Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics. Series in Partial Differential Equations and Applications, vol. 1. World Scientific Publishing Co. Inc, River Edge (2002). https://doi.org/10.1142/9789812776891

    Book  MATH  Google Scholar 

  39. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955). https://doi.org/10.2307/1992999

    Article  MathSciNet  MATH  Google Scholar 

  40. Jabin, P.-E., Wang, Z.: Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1,\infty }\) kernels. Invent. Math. 214, 523–591 (2018). https://doi.org/10.1007/s00222-018-0808-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kielhöfer, H.: A bifurcation theorem for potential operators. J. Funct. Anal. 77, 1–8 (1988). https://doi.org/10.1016/0022-1236(88)90073-0

    Article  MathSciNet  MATH  Google Scholar 

  42. Lacker, D.: Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions. arXiv preprint arXiv:2105.02983 (2021)

  43. Lacker, D.: Quantitative approximate independence for continuous mean field Gibbs measures. Electron. J. Probab. 27, 1–21 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ledoux, M.: Logarithmic Sobolev Inequalities for Unbounded Spin Systems Revisited. In: Séminaire de Probabilités, XXXV. Lecture Notes in Mathematics, vol. 1755, pp. 167–194. Springer, Berlin. https://doi.org/10.1007/978-3-540-44671-2_13 (2001)

  45. Lelièvre, T.: A general two-scale criteria for logarithmic Sobolev inequalities. J. Funct. Anal. 256, 2211–2221 (2009). https://doi.org/10.1016/j.jfa.2008.09.019

    Article  MathSciNet  MATH  Google Scholar 

  46. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 903–991 (2009)

  47. Malrieu, F.: Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stochastic Process. Appl. 95, 109–132 (2001). https://doi.org/10.1016/S0304-4149(01)00095-3

    Article  MathSciNet  MATH  Google Scholar 

  48. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)

    MathSciNet  MATH  Google Scholar 

  49. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane–Emden equation. J. Statist. Phys. 29, 561–578 (1982). https://doi.org/10.1007/BF01342187

    Article  ADS  MathSciNet  Google Scholar 

  51. Otto, F.F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Differ. Equ. 26, 101–174 (2001). https://doi.org/10.1081/PDE-100002243

    Article  MathSciNet  MATH  Google Scholar 

  52. Otto, F., Reznikoff, M.G.: A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal. 243, 121–157 (2007). https://doi.org/10.1016/j.jfa.2006.10.002

    Article  MathSciNet  MATH  Google Scholar 

  53. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Pavliotis, G.A.: Stochastic Processes and Applications. Texts in Applied Mathematics, vol. 60. Diffusion Processes, the Fokker–Planck and Langevin Equations. Springer, New York. https://doi.org/10.1007/978-1-4939-1323-7 (2014)

  55. Pavliotis, G.A., Zanoni, A.: Eigenfunction martingale estimators for interacting particle systems and their mean field limit (2021)

  56. Ripani, L.: Convexity and regularity properties for entropic interpolations. J. Funct. Anal. 277, 368–391 (2019). https://doi.org/10.1016/j.jfa.2019.04.004

    Article  MathSciNet  MATH  Google Scholar 

  57. Rosenzweig, M., Serfaty, S.: Global-in-time mean-field convergence for singular Riesz-type diffusive flows. arXiv preprint arXiv:2108.09878 (2021)

  58. Rougerie, N.: De finetti theorems, mean-field limits and Bose-Einstein condensation. arXiv e-prints arXiv:1506.05263 (2015)

  59. Santambrogio, F.: \(\{\)Euclidean, metric, and Wasserstein\(\}\) gradient flows: an overview. Bull. Math. Sci. 7, 87–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31, 1427 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Serfaty, S.: Mean field limit for Coulomb-type flows. Duke Math. J. 169, 2887–2935 (With an appendix by Mitia Duerinckx and Serfaty). https://doi.org/10.1215/00127094-2020-0019 (2020)

  62. Shiga, T., Tanaka, H.: Central limit theorem for a system of Markovian particles with mean field interactions. Z. Wahrsch. Verw. Gebiete 69, 439–459 (1985). https://doi.org/10.1007/BF00532743

    Article  MathSciNet  MATH  Google Scholar 

  63. Sznitman, A.-S.: Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56, 311–336 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’été de probabilités de Saint-Flour XIX–1989, pp. 165–251. Springer (1991)

  65. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques 81, 73–205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tanaka, H., Hitsuda, M.: Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. J. 11, 415–423 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  67. Varadhan, S.R.S.: Scaling limits for interacting diffusions. Commun. Math. Phys. 135, 313–353 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer (2008)

    MATH  Google Scholar 

  69. Wang, Z., Zhao, X., Zhu, R.: Gaussian fluctuations for interacting particle systems with singular kernels. arXiv preprint arXiv:2105.13201 (2021)

  70. Yoshida, N.: Phase transition from the viewpoint of relaxation phenomena. Rev. Math. Phys. 15, 765–788 (2003). https://doi.org/10.1142/S0129055X03001746

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin Hairer and Luigia Ripani for useful discussions during the course of this work. G.A.P. was partially supported by the EPSRC through the grant number EP/P031587/1 and by JPMorgan Chase & Co under J.P. Morgan A.I. Research Awards 2019 and 2021. M.G.D. was partially supported by CNPq-Brazil (#308800/2019-2), Instituto Serrapilheira, NSF-DMS-2205937 and NSF-DMS RTG 1840314. S.A.S acknowledges financial support from the National Key R &D Program of China (No. 2022YFA1006300) and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías G. Delgadino.

Additional information

Communicated by M. Hairer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgadino, M.G., Gvalani, R.S., Pavliotis, G.A. et al. Phase Transitions, Logarithmic Sobolev Inequalities, and Uniform-in-Time Propagation of Chaos for Weakly Interacting Diffusions. Commun. Math. Phys. 401, 275–323 (2023). https://doi.org/10.1007/s00220-023-04659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04659-z

Navigation