Skip to main content
Log in

Critical dynamics and fluctuations for a mean-field model of cooperative behavior

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The main objective of this paper is to examine in some detail the dynamics and fluctuations in the critical situation for a simple model exhibiting bistable macroscopic behavior. The model under consideration is a dynamic model of a collection of anharmonic oscillators in a two-well potential together with an attractive mean-field interaction. The system is studied in the limit as the number of oscillators goes to infinity. The limit is described by a nonlinear partial differential equation and the existence of a phase transition for this limiting system is established. The main result deals with the fluctuations at the critical point in the limit as the number of oscillators goes to infinity. It is established that these fluctuations are non-Gaussian and occur at a time scale slower than the noncritical fluctuations. The method used is based on the perturbation theory for Markov processes developed by Papanicolaou, Stroock, and Varadhan adapted to the context of probability-measure-valued processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenmann, Geometric analysis of Φ4 fields and Ising models,Comm. Math. Phys. (1983), to appear.

  2. M. Aoki, Dynamics and control of systems composed of a large number of similar subsystems, inDynamic Optimization and Mathematical Economics, P. T. Liu, ed. (Plenum Press, New York, 1980).

    Google Scholar 

  3. Ja. I. Belopol'skaja and Ju. L. Daleckii, Markov processes connected with nonlinear parabolic systems,Sov. Math. Dokl. 21:99–103 (1980).

    Google Scholar 

  4. P. M. Bleher, Construction of non-Gaussian self-similar random fields with hierarchical structure,Comm. Math. Phys. 84:557–578 (1982).

    Google Scholar 

  5. W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles,Comm. Math. Phys. 56:101–113 (1977).

    Google Scholar 

  6. M. Cassandro and G. Jona-Lasinio, Critical point behavior and probability theory,Adv. Phys. 27:913–941 (1978).

    Google Scholar 

  7. P. Collet and J.-P. Eckmann, A renormalization group analysis of the hierarchical model in statistical mechanics, Lecture Notes in Physics 74 (Springer-Verlag, New York, 1978).

    Google Scholar 

  8. D. A. Dawson, Geostochastic calculus,Can. J. Stat. 6:143–168 (1978).

    Google Scholar 

  9. D. A. Dawson and H. Salehi, Spatially homogeneous random evolutions,J. Mult. Anal. 10:141–180(1980).

    Google Scholar 

  10. D. A. Dawson, Galerkin approximation of nonlinear Markov processes, inStatistics and Related Topics, M. Csorgo, D. Dawson, J. N. K. Rao, and A. K. Md. Saleh, eds. (North-Holland, Amsterdam, 1981), pp. 317–339.

    Google Scholar 

  11. D. A. Dawson and K. J. Hochberg, Wandering random measures in the Fleming-Viot model,Ann. Prob. 10:554–580 (1982).

    Google Scholar 

  12. H. Dekker, Critical dynamics: the expansion of the master equation including a critical point I, II,Physica 103A (1980).

  13. R. C. Desai and R. Zwanzig, Statistical mechanics of a nonlinear stochastic model,J. Stat. Phys. 19:1–24(1978).

    Google Scholar 

  14. F. Dunlop and C. M. Newman, Multicomponent field theories and classical rotators,Comm. Math. Phys. 44:223–235 (1975).

    Google Scholar 

  15. R. Ellis, J. L. Monroe, and C. M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets,Comm. Math. Phys. 46:167–182 (1976).

    Google Scholar 

  16. R. S. Ellis and C. M. Newman, Fluctuations in Curie-Weiss examples, inProceedings of the International Conference on the Mathematical Problems in Theoretical Physics, Lecture Notes in Physics 80 (Springer-Verlag, New York, 1978).

    Google Scholar 

  17. R. S. Ellis and C. M. Newman, Necessary and sufficient conditions for the GHS inequality with applications to probability and analysis,Trans. Amer. Math. Soc. 237:83–99 (1978).

    Google Scholar 

  18. R. S. Ellis and C. M. Newman, Limit theorems for sums of dependent random variables occurring in statistical mechanics,Z. Wahr. verw Geb. 44:117–139 (1978).

    Google Scholar 

  19. R. S. Ellis and C. M. Newman, The statistics of the Curie-Weiss models,J. Stat. Phys. 19:149–161 (1978).

    Google Scholar 

  20. R. S. Ellis, Large deviations and other limit theorems for a class of dependent random variables with applications to statistical mechanics,Z. Wahr. verw. Geb., to appear.

  21. A. Erdélyi, ed.,Bateman Manuscript Project, Higher Transcendental Functions, Vol. 2 (McGraw-Hill, New York, 1953).

    Google Scholar 

  22. S. N. Ethier and T. G. Kurtz,Markov Processes: Characterization and Convergence (John Wiley, New York, to appear).

  23. J. Fritz, Infinite lattice systems of interacting diffusion processes, existence and regularity properties,Z. Wahr. 59:291–309 (1982).

    Google Scholar 

  24. C. W. Gardner, Aspects of classical and quantum theory of stochastic bistable systems, inStochastic Nonlinear Systems in Physics, Chemistry and Biology (Springer-Verlag, New York, 1981), pp. 53–61.

    Google Scholar 

  25. J. Glimm and A. Jaffe,Quantum Physics (Springer-Verlag, New York, 1981).

    Google Scholar 

  26. H. Haken,Synergetics: An Introduction to Nonequilibrium Phase Transitions in Physics, Chemistry and Biology (Springer-Verlag, New York, 1977).

    Google Scholar 

  27. R. Holley and D. Stroock, Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions,Publ. R.I.M.S., Kyoto Univ. 14:741–788 (1978).

    Google Scholar 

  28. W. Horsthemke, M. Malik-Mansour, and B. Hayez, An asymptotic expansion of the nonlinear Master equation,J. Stat. Phys. 16:201–215 (1977).

    Google Scholar 

  29. N. Ikeda and S. Watanabe,Stochastic Differential Equations and Diffusion Processes (North-Holland, Amsterdam, and Kodansha, Tokyo, 1981).

    Google Scholar 

  30. K. Itô and S. Watanabe, Introduction to stochastic differential equations, inProceedings of the International Symposium on Stochastic Differential Equations (John Wiley, New York, 1978).

    Google Scholar 

  31. K. Itô, Stochastic analysis in infinite dimensions, inStochastic Analysis, A. Friedman and M. Pinsky, eds. (Academic Press, New York, 1978), pp. 187–198.

    Google Scholar 

  32. R. Z. Khasminskii,Stability of Systems of Differential Equations under Random Perturbations of their Parameters (Nauka, Moscow, 1969).

    Google Scholar 

  33. C. Kipnis, Processus de Champs Moyen: Existence, Unicité, Mesures Invariantes et Limites Thermodynamiques,Stochastics, 1–14 (1980).

  34. K. Kometani and H. Shimizu, A study of self-organizing processes of nonlinear stochastic variables,J. Stat. Phys. 13:473–490 (1975).

    Google Scholar 

  35. T. G. Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolution,J. Funct. Anal. 12:55–67 (1973).

    Google Scholar 

  36. R. Lang, An elementary introduction to the mathematical problems of the renormalization group, 1981, preprint.

  37. J. L. Lebowitz, GHS and other inequalities,Comm. Math. Phys. 35:87–92 (1974).

    Google Scholar 

  38. S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin-Cummings Publ. Co., Reading, Mass., 1976).

    Google Scholar 

  39. M. Malek-Mansour, C. Van den Broeck, G. Nicolis, and J. W. Turner, Asymptotic properties of Markovian master equations,Ann. Phys. 131:283–313 (1981).

    Google Scholar 

  40. H. P. McKean, Jr., A class of Markov processes associated with nonlinear parabolic equations,Proc. N.A.S., U.S.A. 56:1907–1911.

  41. H. P. McKean, Jr., Propagation of chaos for a class of nonlinear parabolic equations, inLecture Series in Differential Equations, Vol. 2 (Van Nostrand Reinhold, New York, 1969), pp. 41–57.

    Google Scholar 

  42. H. P. McKean, Jr.,Stochastic Integrals (Academic Press, New York, 1969).

    Google Scholar 

  43. H. P. McKean, Jr., Fluctuations in the kinetic theory of gases,Comm. Pure Appl. Math. 28:435–455.

  44. G. Nicolis, M. Malek-Mansour, A. Van Nypelseer, and K. Kitahara, The onset of instabilities in nonequilibrium systems,J. Stat. Phys. 14:417–432 (1976).

    Google Scholar 

  45. G. C. Papanicolaou, Introduction to the asymptotic analysis of stochastic equations, inLectures in Applied Mathematics 16 (Amer. Math. Soc, 1977), pp. 108–148.

  46. G. Papanicolaou, D. Stroock, and S. R. S. Varadhan, Martingale approach to some limit theorems, inDuke Turbulence Conference, 1977, Duke University.

  47. V. V. Petrov,Sums of Independent Random Variables (Springer-Verlag, New York).

  48. V. Richter, Multidimensional local limit theorems for large deviations,Theor. Prob. Appl. 3:100–106(1958).

    Google Scholar 

  49. V. Richter, A more precise form of an inequality of S. N. Bernstein for large deviations, inSelected Translations in Mathematical Statistics and Probability, Vol. 4 (Amer. Math. Soc, Providence, Rhode Island, 1963).

    Google Scholar 

  50. Z. Schuss,Theory and Applications of Stochastic Differential Equations (John Wiley, New York, 1979).

    Google Scholar 

  51. J. A. Shohat and J. D. Tamarkin, The Problem of Moments,Math. Surveys 1, 2nd ed. (Amer. Math. Soc., Providence, Rhode Island, 1950).

    Google Scholar 

  52. B. Simon and R. B. Griffiths, The P(Φ) field theory as a classical Ising model,Comm. Math. Phys. 13:145–164(1973).

    Google Scholar 

  53. Ya. G. Sinai,Theory of Phase Transitions. Rigorous Results (Pergamon, London, 1981).

    Google Scholar 

  54. D. W. Stroock and S. R. S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, New York, 1979).

    Google Scholar 

  55. H. Tanaka and M. Hitsuda, Central limit theorem for a simple diffusion model of interacting particles,Hiroshima Math. J. 11:415–423 (1981).

    Google Scholar 

  56. H. Tanaka, Limit theorems for certain diffusion processes with interaction, preprint, 1982.

  57. E. C. Titchmarsh,Eigenfunction Expansions Associated with Second Order Differential Equations (Clarendon Press, Oxford, 1946).

    Google Scholar 

  58. S. R. S. Varadhan,Lectures on Diffusion Problems and Partial Differential Equations (Tata Institute, Bombay, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the Natural Sciences and Engineering Research Council of Canada. In addition, a part of this research was supported by SFB 123, University of Heidelberg and the University of Wisconsin-Madison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, D.A. Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J Stat Phys 31, 29–85 (1983). https://doi.org/10.1007/BF01010922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010922

Key words

Navigation