Skip to main content
Log in

Concentration of measure and isoperimetric inequalities in product spaces

  • Published:
Publications Mathématiques de l'Institut des Hautes Études Scientifiques Aims and scope Submit manuscript

Abstract

The concentration of measure phenomenon in product spaces roughly states that, if a set A in a product ΩN of probability spaces has measure at least one half, “most” of the points of Ωn are “close” to A. We proceed to a systematic exploration of this phenomenon. The meaning of the word “most” is made rigorous by isoperimetrictype inequalities that bound the measure of the exceptional sets. The meaning of the work “close” is defined in three main ways, each of them giving rise to related, but different inequalities. The inequalities are all proved through a common scheme of proof. Remarkably, this simple approach not only yields qualitatively optimal results, but, in many cases, captures near optimal numerical constants. A large number of applications are given, in particular to Percolation, Geometric Probability, Probability in Banach Spaces, to demonstrate in concrete situations the extremely wide range of application of the abstract tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, J. L. Lebowitz, D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick spin glass model,Commun. Math. Phys. 112 (1987), 3–20.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon, J. Spencer,The Probabilistic Method, Wiley, 1991.

  3. D. Amir, V. D. Milman, Unconditional and symmetric sets inn-dimensional normed spaces,Israel J. Math. 37 (1980), 3–20.

    MATH  MathSciNet  Google Scholar 

  4. B. Bollobás, The chromatic number of random graphs,Combinatorica 8 (1988), 49–55.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bollabás, Random graphs revisited,Proceedings of Symposia on Applied Mathematics, Vol. 44, 1991, 81–98.

    Google Scholar 

  6. B. Bollobás, G. Brightwell, The height of a random partial order: Concentration of Measure,Annals of Applied Probab.2 (1992), 1009–1018.

    MATH  Google Scholar 

  7. E. G. Coffman, Jr.,G. S. Lucker,Probabilistic Analysis of Packing and Partitioning Algorithms, Wiley, 1991.

  8. F. Comets, J. Neveu, The Sherrington-Kirkpatrick Model of Spin Classes and Stochastic Calculus: the high temperature case,Comm. Math. Phys. 166 (1995), 549–564.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Dilworth, S. Montgomery-Smith, The distribution of vector-valued Rademacher series,Ann. Probab. 21 (1993), 2046–2052.

    MATH  MathSciNet  Google Scholar 

  10. A. M. Frieze, On the length of the longest monotone subsequence in a random permutation,Ann. Appl. Prob. 1 (1991), 301–305.

    MATH  MathSciNet  Google Scholar 

  11. M. Gromov, V. D. Milman, A topological application of the isoperimetric inequality,Amer. J. Math. 105 (1983), 843–854.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. H. Harper, Optimal numbering and isoperimetric problems on graphs,J. Comb. Theory (1966), 385–395.

  13. W. Hoeffding, Probability inequalities for sums of bounded random variables,J. Amer. Statist. Assoc. 58 (1963), 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Janson, Poisson approximation for large deviations,Random Structures and Algorithms 1 (1990), 221–290.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Johnson, G. Schechtman, Remarks on Talagrand’s deviation inequality for Rademacher’s functions,Lecture Notes in Math. 1470, Springer Verlag, 1991, 72–77.

    MathSciNet  Google Scholar 

  16. R. M. Karp, An upper bound on the expected cost of an optimal assignment, inDiscrete Algorithm and Complexity: Proceedings of the Japan-US joint Seminar, Academic Press, 1987, 1–4.

  17. H. Kesten, Aspects of first-passage percolation, Ecole d’Eté de Probabilité de Saint-Flour XIV,Lecture Notes in Math. 1180, 125–264, Springer Verlag, 1986, 125–264.

    MathSciNet  Google Scholar 

  18. H. Kesten, On the speed of convergence in first passage percolation,Ann. Applied Probab. 3 (1993), 296–338.

    MATH  MathSciNet  Google Scholar 

  19. R. M. Karp, J. M. Steele, Probabilistic analysis of heuristics, inThe Traveling Salesman Problem, John Wiley and Sons, 1985, 181–205.

  20. J. Leader, Discrete isoperimetric inequalities,Proceedings of Symposia on Applied Mathematics, Vol. 44, 1991, 57–80.

    MathSciNet  Google Scholar 

  21. M. Ledoux,Gaussian randomization and the law of the iterated logarithm in type 2 Banach spaces, Unpublished manuscript, 1985.

  22. M. Ledoux, M. Talagrand, Characterization of the law of the iterated logarithm in Banach spaces,Ann. Probab. 16 (1988), 1242–1264.

    MATH  MathSciNet  Google Scholar 

  23. M. Ledoux, M. Talagrand,Probability in Banach Spaces, Springer Verlag, 1991.

  24. T. Luczak, The chromatic number of Random graphs,Combinatorica 11 (1991), 45–54.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Maurey, Construction de suites symétriques,Comptes Rendus Acad. Sci. Paris 288 (1979), 679–681.

    MATH  MathSciNet  Google Scholar 

  26. B. Maurey, Some deviation inequalities,Geometric and Functional Analysis 1 (1991), 188–197.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. McDiarmid, On the method of bounded differences, inSurvey in Combinatorics (J. Simons, Ed.), London Mathematical Society Lecture Notes, Vol. 141, Cambridge Univ. Press, London/New York, 1989, 148–188.

    Google Scholar 

  28. C. McDiarmid, RyanHayward, Strong concentration for Quicksort,Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1992, 414–421.

  29. V. D. Milman, G. Schechtman, Asymptotic theory of finite dimensional normed spaces,Lecture Notes in Math. 1200, Springer Verlag, 1986.

  30. V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies,Func. Anal. Appl. 5 (1971), 28–37.

    MathSciNet  Google Scholar 

  31. V. D. Milman, Asymptotic properties of functions of several variables defined on homogenous spaces,Soviet. Math Dokl. 12 (1971), 1277–1491.

    MathSciNet  Google Scholar 

  32. V. D. Milman, The heritage of P. Lévy in geometrical functional analysis,Astérisque 157/158 (1988), 273–301.

    MathSciNet  Google Scholar 

  33. G. Pisier, Probabilistic methods in the geometry of Banach spaces. Probability and Analysis, Varena (Italy) 1985,Lecture Notes in Math. 1206, Springer Verlag, 1986, 167–241.

    MathSciNet  Google Scholar 

  34. W. Rhee, On the fluctuations of the stochastic traveling salesperson problem,Math. of Operation Research 13 (1991), 482–489.

    Article  MathSciNet  Google Scholar 

  35. W. Rhee, A matching problem and subadditive Euclidean functionals,Ann. Applied Probab. 3 (1993), 794–801.

    MATH  MathSciNet  Google Scholar 

  36. W. Rhee, On the fluctuations of simple matching,Oper. Res. Letters 16 (1994), 27–32.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. Rhee, Inequalities for the Bin Packing Problem III,Optimization 29 (1994), 381–385.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. Rosinski, Remarks on a Strong Exponential Integrability of Vector Valued Random Series and Triangular Arrays,Ann. Probab., to appear.

  39. W. Rhee, M. Talagrand, A sharp deviation inequality for the stochastic traveling salesman problemAnn. Probab. 17 (1989), 1–8.

    MATH  MathSciNet  Google Scholar 

  40. G. Schechtman, Levy type inequality for a class of metric spaces, Martingale Theory in Harmonic analysis and Banach spaces, Cleveland 1981,Lecture Note in Math. 939, Springer Verlag, 1981, 211–215.

    MathSciNet  Google Scholar 

  41. E. Shamir, J. Spencer, Sharp concentration of the chromatic number of random graphs G n, p ,Combinatorica 7 (1987), 121–129.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Talagrand, An isoperimetric theorem on the cube and the Kintchine Kahane inequalities,Proc. Amer. Math. Soc. 104 (1988), 905–909.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Talagrand, Isoperimetry and integrability of the sum of independent Banach space valued random variables,Ann. Probab. 17 (1989), 1546–1570.

    MATH  MathSciNet  Google Scholar 

  44. M. Talagrand, A new isoperimetric inequality for product measure, and the tails of sums of independent random variables,Geometric and Functional Analysis 1 (1991), 211–223.

    Article  MATH  MathSciNet  Google Scholar 

  45. M. Talagrand, A new isoperimetric inequality for product measure, and the concentration of measure phenomenon, Israel Seminar (GAFA),Lecture Notes in Math. 1469, Springer Verlag, 1991, 94–124.

    Article  MathSciNet  Google Scholar 

  46. M. Talagrand, Regularity of infinitely divisible processes,Ann. Probab. 21 (1993), 362–432.

    MATH  MathSciNet  Google Scholar 

  47. M. Talagrand, Supremum of some canonical processes,Amer. J. Math. 116 (1994), 295–314.

    Article  MathSciNet  Google Scholar 

  48. M. Talagrand, New concentration inequalities, in preparation.

  49. D. W. Walkup, On the expected value of a random assignment problem,SIAM J. Comput. 8 (1979), 440–442.

    Article  MATH  MathSciNet  Google Scholar 

  50. V. V. Yurinskii, Exponential bounds for large deviations,Theor. Prob. Appl. 19 (1974), 154–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Vitali Milman

About this article

Cite this article

Talagrand, M. Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’Institut des Hautes Scientifiques 81, 73–205 (1995). https://doi.org/10.1007/BF02699376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699376

AMS Classification numbers

Navigation