Skip to main content

Advertisement

SpringerLink
  • Communications in Mathematical Physics
  • Journal Aims and Scope
  • Submit to this journal
Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Spaces of Type S as Topological Algebras under Twisted Convolution and Star Product

01 September 2019

M. A. Soloviev

Spaces of Type S and Deformation Quantization

01 December 2019

M. A. Soloviev

The star product in interacting quantum field theory

15 February 2020

Eli Hawkins & Kasia Rejzner

Algebraic field theory operads and linear quantization

09 July 2019

Simen Bruinsma & Alexander Schenkel

T T ¯ $$ T\overline{T} $$ and J T ¯ $$ J\overline{T} $$ deformations in quantum mechanics

19 November 2020

Soumangsu Chakraborty & Amiya Mishra

Generalized Fourier–Feynman transforms and generalized convolution products on Wiener space II

01 January 2020

Sang Kil Shim & Jae Gil Choi

Dual Convolution for the Affine Group of the Real Line

22 May 2021

Yemon Choi & Mahya Ghandehari

Fundamental formulas for modified generalized integral transforms

01 January 2020

Hyun Soo Chung

Semi-Differential Operators and the Algebra of Operator Product Expansion of Quantum Fields

08 April 2021

Nikolay M. Nikolov

Download PDF
  • Open Access
  • Published: 09 October 2010

Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories

  • Detlev Buchholz1,
  • Gandalf Lechner2 &
  • Stephen J. Summers3 

Communications in Mathematical Physics volume 304, pages 95–123 (2011)Cite this article

  • 573 Accesses

  • 48 Citations

  • 5 Altmetric

  • Metrics details

Abstract

Warped convolutions of operators were recently introduced in the algebraic framework of quantum physics as a new constructive tool. It is shown here that these convolutions provide isometric representations of Rieffel’s strict deformations of C *–dynamical systems with automorphic actions of \({\mathbb R^n}\) , whenever the latter are presented in a covariant representation. Moreover, the device can be used for the deformation of relativistic quantum field theories by adjusting the convolutions to the geometry of Minkowski space. The resulting deformed theories still comply with pertinent physical principles and their Tomita–Takesaki modular data coincide with those of the undeformed theory; but they are in general inequivalent to the undeformed theory and exhibit different physical interpretations.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Baumgärtel H., Wollenberg M.: Causal Nets of Operator Algebras. Akademie Verlag, Berlin (1992)

    MATH  Google Scholar 

  3. Borchers H.-J.: The CPT-theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 15–332 (1992)

    Article  MathSciNet  Google Scholar 

  4. Borchers H.-J.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41, 3604–3673 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–785 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buchholz D., D’Antoni C., Fredenhagen K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Buchholz D., Dreyer O., Florig M., Summers S.J.: Geometric modular action and spacetime symmetry groups. Rev. Math. Phys. 12, 475–560 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065–1080 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Buchholz D., Summers S.J.: An Algebraic characterization of vacuum states in Minkowski space. 3. Reflection maps. Commun. Math. Phys. 246, 625–641 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Buchholz D., Summers S.J.: Stable quantum systems in Anti-de Sitter space: Causality, independence and spectral properties. J. Math. Phys. 45, 4810–4831 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Buchholz D., Summers S.J.: String– and brane–localized causal fields in a strongly nonlocal model. J. Phys. A 40, 2147–2163 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Buchholz, D., Summers, S.J.: Warped convolutions: A novel tool in the construction of quantum field theories. In: Quantum Field Theory and Beyond, edited by Seiler, E., Sibold, K. Singapore: World Scientific, 2008, pp. 107–121

  14. Dappiaggi, C., Lechner, G., Morfa-Morales, E.: Deformations of quantum field theories on spacetimes with Killing vector fields. Commun. Math. Phys. (2010). arXiv:1006.3548 (to appear)

  15. Florig M.: On Borchers’ theorem. Lett. Math. Phys. 46, 289–293 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Glimm J., Jaffe A.: Quantum Physics. A Functional Integral Point of View. Springer Verlag, Berlin-Heidelberg-New York (1987)

    Google Scholar 

  17. Grosse H., Lechner G.: Wedge–local quantum fields and noncommutative Minkowski space. JHEP 0711, 012 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. JHEP 0809, 131 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Guido D.: Modular covariance, PCT, Spin and Statistics. Ann. Inst. Henri Poincaré 63, 383–398 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Haag, R.: Local Quantum Physics. Berlin, Heidelberg and New York: Springer Verlag, 1992

  21. Kaschek D., Neumaier N., Waldmann S.: Complete positivity of Rieffel’s quantization by actions of \({\mathbb R^d}\). J. Noncommut. Geom. 3, 361–375 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lechner G.: On the existence of local observables in theories with a factorizing S-matrix. J. Phys. A 38, 3045–3056 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Lechner, G.: Article in preparation

  26. Mund J., Schroer B., Yngvason J.: String–localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Pedersen G.K.: C*–Algebras and Their Automorphism Groups. Academic Press, London-New York-San Francisco (1979)

    MATH  Google Scholar 

  28. Rieffel M.A.: Deformation quantization for actions of \({\mathbb R^d}\). Memoirs A.M.S. 506, 1–96 (1993)

    Google Scholar 

  29. Schroer B.: Modular localization and the bootstrap–formfactor program. Nucl. Phys. B 499, 547–568 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Takesaki M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Springer Verlag, Berlin-Heidelberg-New York (1970)

    MATH  Google Scholar 

  31. Takesaki M.: Theory of Operator Algebras. Volume II. Springer Verlag, Berlin-Heidelberg-New York (2003)

    Google Scholar 

Download references

Acknowledgements

GL wishes to thank S. Waldmann for interesting discussions about Rieffel deformations. Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik and Courant Centre “Higher Order Structures in Mathematics”, Universität Göttingen, 37077, Göttingen, Germany

    Detlev Buchholz

  2. Fakultät für Physik, Universität Wien, 1090, Vienna, Austria

    Gandalf Lechner

  3. Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA

    Stephen J. Summers

Authors
  1. Detlev Buchholz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gandalf Lechner
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stephen J. Summers
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Detlev Buchholz.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Sergio Doplicher on the occasion of his seventieth birthday

Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.

Research supported by the NSF Grant DMS-0901370.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Buchholz, D., Lechner, G. & Summers, S.J. Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories. Commun. Math. Phys. 304, 95–123 (2011). https://doi.org/10.1007/s00220-010-1137-1

Download citation

  • Received: 15 May 2010

  • Accepted: 24 May 2010

  • Published: 09 October 2010

  • Issue Date: May 2011

  • DOI: https://doi.org/10.1007/s00220-010-1137-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Minkowski Space
  • Spacetime Dimension
  • Adjoint Action
  • Covariant Representation
  • Strong Operator Topology
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.