Abstract
Warped convolutions of operators were recently introduced in the algebraic framework of quantum physics as a new constructive tool. It is shown here that these convolutions provide isometric representations of Rieffel’s strict deformations of C *–dynamical systems with automorphic actions of \({\mathbb R^n}\) , whenever the latter are presented in a covariant representation. Moreover, the device can be used for the deformation of relativistic quantum field theories by adjusting the convolutions to the geometry of Minkowski space. The resulting deformed theories still comply with pertinent physical principles and their Tomita–Takesaki modular data coincide with those of the undeformed theory; but they are in general inequivalent to the undeformed theory and exhibit different physical interpretations.
References
Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)
Baumgärtel H., Wollenberg M.: Causal Nets of Operator Algebras. Akademie Verlag, Berlin (1992)
Borchers H.-J.: The CPT-theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 15–332 (1992)
Borchers H.-J.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41, 3604–3673 (2000)
Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–785 (2002)
Buchholz D., D’Antoni C., Fredenhagen K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123 (1987)
Buchholz D., Dreyer O., Florig M., Summers S.J.: Geometric modular action and spacetime symmetry groups. Rev. Math. Phys. 12, 475–560 (2000)
Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)
Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065–1080 (2004)
Buchholz D., Summers S.J.: An Algebraic characterization of vacuum states in Minkowski space. 3. Reflection maps. Commun. Math. Phys. 246, 625–641 (2004)
Buchholz D., Summers S.J.: Stable quantum systems in Anti-de Sitter space: Causality, independence and spectral properties. J. Math. Phys. 45, 4810–4831 (2004)
Buchholz D., Summers S.J.: String– and brane–localized causal fields in a strongly nonlocal model. J. Phys. A 40, 2147–2163 (2007)
Buchholz, D., Summers, S.J.: Warped convolutions: A novel tool in the construction of quantum field theories. In: Quantum Field Theory and Beyond, edited by Seiler, E., Sibold, K. Singapore: World Scientific, 2008, pp. 107–121
Dappiaggi, C., Lechner, G., Morfa-Morales, E.: Deformations of quantum field theories on spacetimes with Killing vector fields. Commun. Math. Phys. (2010). arXiv:1006.3548 (to appear)
Florig M.: On Borchers’ theorem. Lett. Math. Phys. 46, 289–293 (1998)
Glimm J., Jaffe A.: Quantum Physics. A Functional Integral Point of View. Springer Verlag, Berlin-Heidelberg-New York (1987)
Grosse H., Lechner G.: Wedge–local quantum fields and noncommutative Minkowski space. JHEP 0711, 012 (2007)
Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. JHEP 0809, 131 (2008)
Guido D.: Modular covariance, PCT, Spin and Statistics. Ann. Inst. Henri Poincaré 63, 383–398 (1995)
Haag, R.: Local Quantum Physics. Berlin, Heidelberg and New York: Springer Verlag, 1992
Kaschek D., Neumaier N., Waldmann S.: Complete positivity of Rieffel’s quantization by actions of \({\mathbb R^d}\). J. Noncommut. Geom. 3, 361–375 (2009)
Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003)
Lechner G.: On the existence of local observables in theories with a factorizing S-matrix. J. Phys. A 38, 3045–3056 (2005)
Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008)
Lechner, G.: Article in preparation
Mund J., Schroer B., Yngvason J.: String–localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006)
Pedersen G.K.: C*–Algebras and Their Automorphism Groups. Academic Press, London-New York-San Francisco (1979)
Rieffel M.A.: Deformation quantization for actions of \({\mathbb R^d}\). Memoirs A.M.S. 506, 1–96 (1993)
Schroer B.: Modular localization and the bootstrap–formfactor program. Nucl. Phys. B 499, 547–568 (1997)
Takesaki M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Springer Verlag, Berlin-Heidelberg-New York (1970)
Takesaki M.: Theory of Operator Algebras. Volume II. Springer Verlag, Berlin-Heidelberg-New York (2003)
Acknowledgements
GL wishes to thank S. Waldmann for interesting discussions about Rieffel deformations. Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Dedicated to Sergio Doplicher on the occasion of his seventieth birthday
Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.
Research supported by the NSF Grant DMS-0901370.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Buchholz, D., Lechner, G. & Summers, S.J. Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories. Commun. Math. Phys. 304, 95–123 (2011). https://doi.org/10.1007/s00220-010-1137-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-010-1137-1
Keywords
- Minkowski Space
- Spacetime Dimension
- Adjoint Action
- Covariant Representation
- Strong Operator Topology