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Abstract: Warped convolutions of operators were recently introduced in the algebraic
framework of quantum physics as a new constructive tool. It is shown here that these
convolutions provide isometric representations of Rieffel’s strict deformations of C∗–
dynamical systems with automorphic actions of R

n , whenever the latter are presented
in a covariant representation. Moreover, the device can be used for the deformation
of relativistic quantum field theories by adjusting the convolutions to the geometry of
Minkowski space. The resulting deformed theories still comply with pertinent physical
principles and their Tomita–Takesaki modular data coincide with those of the unde-
formed theory; but they are in general inequivalent to the undeformed theory and exhibit
different physical interpretations.

1. Introduction

Recent advances in algebraic quantum field theory have led to purely algebraic construc-
tions of quantum field models on Minkowski space, both classical and noncommutative
[5,9,11–13,17,18,22–24,26,29], many of which cannot be achieved by the standard
methods of constructive quantum field theory. Some of these models are local and free,
some are local and have nontrivial S–matrices, and yet others manifest only certain rem-
nants of locality, though these remnants suffice to enable the computation of nontrivial
S–matrix elements.

In order to construct a quantum field model on noncommutative Minkowski space,
Grosse and one of us [17] have deformed the free quantum field in a certain manner
to find a family of theories which are Poincaré covariant and comply with a slightly
weakened version of the principle of Einstein causality (“wedge locality”). As pointed
out in [17], a completely analogous deformation can be carried out on a free field on
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classical Minkowski space. In [13] two of us presented a generalization (called a warped
convolution) of that deformation which can be applied to any Minkowski space quantum
field model in any number of dimensions. This deformation results in a family of distinct
theories which are wedge–local and covariant under the representation of the Poincaré
group associated with the initial, undeformed theory. It turns out that also the S–matrix
changes under this deformation, and the scattering is nontrivial even if the scattering
of the initial theory is trivial. When taking the free quantum field as the initial model,
this deformation coincides with that of Grosse and Lechner. It provides the first fully
consistent examples of relativistic quantum field theories on four–dimensional Minkow-
ski space describing nontrivial elastic scattering processes [13,17].

Warped convolution was subsequently studied in the language of Wightman
quantum field theory in [18], where it was shown that the deformation of the field oper-
ators can be understood as resulting in a certain deformation of the canonical product on
the Borchers–Uhlmann algebra – the algebra of test functions canonically associated with
a Wightman theory. This was the first indication that the deformation of operators result-
ing from warped convolution may be equivalent to a deformation of the operator product.

A well known example of this latter type is the strict deformation theory of C∗–
dynamical systems with an action of R

n developed by Rieffel in [28]. It was origi-
nally introduced for the quantization of classical models. We shall show in this paper
that the warped convolution applied to any C∗–dynamical system provides a covariant
representation of the corresponding deformed Rieffel algebra. In particular, all states in
a covariant representation of the initial system can be lifted to states on the deformed
algebra (compare [21, Cor. 4.4]).

In spite of this tight relation between the two deformation procedures, the concept
of warped convolution appears to be more appropriate in applications to quantum field
theory. For there one has to deal simultaneously with a multitude of different defor-
mations and to establish relations between the resulting operators. This can be done
most conveniently in a common representation space of the various Rieffel algebras,
and such a space is provided by the warped convolution procedure. Suitably adjusting
the deformation parameters to the geometry of Minkowski space, we apply the warped
convolutions to quantum field theories, as outlined in [13], and prove as well as extend
the results given there. As we shall further explain, any quantum field theory on Min-
kowski space can be constructed from a (causal) Borchers triple consisting of a von
Neumann algebra, a representation of the Poincaré group and a vector representing the
vacuum state. The physical constraints of causality and covariance can conveniently be
expressed in terms of a few conditions on these triples. We shall show that these proper-
ties are preserved under a distinguished group of warped convolutions, thereby giving
rise to interesting new theories.

The article is organized as follows. In Sect. 2 we prove and extend the results about
warped convolution given in [13]. These extensions allow us to establish the relation with
Rieffel deformed dynamical systems. In Sect. 3 a restricted family of warped convolu-
tions is applied to Borchers triples to construct quantum field theories in two spacetime
dimensions. We show, in particular, that the Tomita–Takesaki modular objects associ-
ated with such triples remain fixed under these deformations. The application of the
warped convolutions to general relativistic quantum field theories in higher dimensions
is discussed in Sect. 4. We present there the salient results given in [13] in the framework
of causal Borchers triples and also establish further physically relevant properties of the
deformed theories, not addressed in [13]. Finally, we briefly discuss prospects for further
development of this approach in Sect. 5.
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2. Warped Convolutions and Rieffel Deformations

We clarify here the relation between the notion of warped convolution, recently
introduced in [13], and the strict deformation of C∗–algebras established in [28] by
Rieffel. In either case one proceeds from a C∗–dynamical system (A, R

n), cf. [27]. It
consists of a C∗–algebra A equipped with a strongly continuous automorphic action of
the group R

n which will be denoted by α.
In order to relate the two settings, it will be convenient to consider the system (A, R

n)

in a covariant representation. That is, we regard A as a concrete C∗–algebra on a Hilbert
space H on which the automorphisms α are implemented by the adjoint action of a
weakly continuous unitary representation U of R

n ,

αx (A) = U (x)AU (x)−1, x ∈ R
n .

As a matter of fact, this assumption imposes no significant restriction of generality. For
if the abstract algebra A can be represented faithfully on some separable Hilbert space,
then there also exists a faithful covariant representation of (A, R

n), cf. [27, Lemma 7.4.9
and Prop. 7.4.7]. Furthermore, since the adjoint action α of the unitary representation
U can be extended to the algebra B(H) of all bounded operators on H, no generality
will be lost when we proceed to the C∗–dynamical system (C, R

n), where C ⊂ B(H) is
the C∗–algebra of all operators on which α acts strongly continuously. We shall then be
able to restrict to suitable subalgebras A of C as necessary.

2.1. Rieffel deformations. We begin by considering the C∗–algebra C of all uniformly
continuous bounded functions A : R

n → B(H). The algebraic structure of C is the nat-
ural one inherited from B(H), i.e. the algebraic operations in C are pointwise defined,

(A + B)(x) = A(x) + B(x), (A B)(x) = A(x) B(x), A∗(x) = A(x)∗ x ∈ R
n ,

and the norm is given by1

||A|| = sup
x∈Rn

||A(x)||.

Following Rieffel [28], we consider the subalgebra C∞ ⊂ C of smooth (in the norm
topology) elements A, i.e. ||∂μ A|| < ∞ for all multi-indices μ.2 Note that the elements
C ∈ B(H) act as multipliers on C∞, if one identifies C with the corresponding constant
function in C∞ (denoted by the same symbol). Clearly, the maps (C, A) �→ C A and
(C, A) �→ AC are norm continuous in both variables, ||C A|| ≤ ||C || ||A|| ≥ ||AC ||,
and the multiplication by C commutes with the operations of differentiation and inte-
gration on C∞.

In the subsequent analysis we shall find it necessary to integrate the functions x �→
A(x). In order to handle the fact that these functions are in general not absolutely
integrable with respect to Lebesgue measure due to a lack of suitable decay properties,
we introduce mollifiers Ln : R

n → C. A convenient choice is given by

Ln(x) = (i + x1 + · · · + xn)−1
∏

k=1,...,n

(i + xk)
−1 , x ∈ R

n .

1 Risking some confusion, we use the same symbol for the norms on C and B(H).
2 We use the notation μ = (μ1, . . . , μn), ∂

μ
x = ∂

μ1
x1 · · · ∂μn

xn and (∂μ A)(x) = ∂
μ
x A(x), where xk are

the components of x with respect to a fixed orthonormal basis in R
n and ∂xk are the corresponding partial

derivatives, k = 1, . . . n.
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Because of this simple form one easily verifies that (∂μLn)(x) = Nn,μ(x)Ln(x), where
Nn,μ is smooth and bounded for any multi-index μ; moreover Ln ∈ L1(Rn). We there-
fore choose Ln as a universal mollifier on C∞.

It follows from the preceding remarks that, for any multi-index μ, the functions
x �→ ∂

μ
x (Ln(x)A(x)) are Bochner integrable in B(H) with respect to the Lebesgue

measure. Moreover, applying Leibniz’s rule, one gets
∫

dx ||∂μ
x (Ln(x)A(x)) || ≤ cn,μ ||A|||μ| , A ∈ C∞ ,

where cn,μ does not depend on A, and we have introduced the norms, m ∈ N0,

||A||m =
∑

μ, |μ|≤m

||∂μ A||.

The following technical lemma is a basic ingredient in the subsequent discussion. In
its proof, we make use of arguments furnished by Rieffel [28].

Lemma 2.1. Let A, B ∈ C be n + 1 times continuously differentiable and let f ∈
S(Rn × R

n) with f (0, 0) = 1.

(i) The norm limit of Bochner integrals in B(H),

lim
ε→0

(2π)−n
∫∫

dxdy f (εx, εy) e−i xy A(x)B(y)
.= A × B ,

exists and does not depend on f . Here xy, x, y ∈ R
n is any symmetric bilinear

form on R
n with determinant 1 or −1.

(ii) With Ln as above, there exists a polynomial u, v �→ Pn(u, v) on R
n ×R

n of degree
n + 1 in the components of u and v, respectively, such that

A × B = (2π)−n
∫∫

dxdy e−i xy Pn(∂x , ∂y) Ln(x)A(x) Ln(y)B(y) ,

where the integral is defined as a Bochner integral in B(H).
(iii) ||A × B|| ≤ cn ||A||n+1 ||B||n+1, for a universal constant cn.
(iv) Let C ∈ B(H). Then

(C A × B) = C(A × B), (A × BC) = (A × B)C,

(AC × B) = (A × C B) ,

and the linear map

C �→ A × C B

is continuous on the unit sphere of B(H) in the strong operator topology.

Proof. (i) Crucial for the result are certain properties of the function x, y �→ e−i xy .
Namely, for each polynomial x, y �→ Qn(x, y) of degree n + 1 in the variables x and y,
respectively, there is a corresponding polynomial Pn in the same family such that

Qn(x, y) e−i xy = Pn(−∂x ,−∂y) e−i xy ,
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and vice versa. The step from the right-hand side to the left-hand side is easily accom-
plished by differentiation; the opposite direction can likewise be established, noticing
that the Fourier transform of x, y �→ e−i xy is again of this form. Choosing

Qn(x, y) = Ln(x)−1 Ln(y)−1, x, y ∈ R
n,

with Ln specified above, one observes that
∫∫

dxdy f (εx, εy) e−i xy A(x)B(y)

=
∫∫

dxdy Qn(x, y) e−i xy f (εx, εy) Ln(x)A(x) Ln(y)B(y)

=
∫∫

dxdy
(

Pn(−∂x ,−∂y)) e−i xy
)

f (εx, εy) Ln(x)A(x) Ln(y)B(y)

=
∫∫

dxdy e−i xy Pn(∂x , ∂y) f (εx, εy) Ln(x)A(x) Ln(y)B(y) ,

where Pn is the polynomial corresponding to the chosen Qn . In view of the smoothness
and rapid decay properties of the integrands, the integrals are defined as Bochner inte-
grals in B(H), and the last equality is obtained by partial integration. Decomposing
Pn(∂x , ∂y) into a sum of monomials of the form ∂

μ
x ∂ν

y with |μ|, |ν| ≤ n + 1, performing
the differentiations and taking into account the properties of Ln , one gets by an appli-
cation of the dominated convergence theorem,

lim
ε→0

∫∫
dxdy e−i xy Pn(∂x , ∂y) f (εx, εy) Ln(x) A(x) Ln(y)B(y)

=
∫∫

dxdy e−i xy Pn(∂x , ∂y) Ln(x)A(x) Ln(y)B(y). (2.1)

Note that the derivatives of x, y �→ f (εx, εy) contain powers of ε as factors and there-
fore disappear in the limit. In particular, the limit does not depend on the choice of f .

Assertion (ii) has been established in (2.1). From this relation one also obtains the
estimate (iii), because of the properties of Ln established above.

The proof of the equalities in (iv) is another straightforward consequence of (ii) and
is therefore omitted. It remains to establish the continuity of the map. In view of the
continuity and decay properties of the functions appearing in the representation (ii) of
the product ×, the integrals underlying the definition of A × C B can be approximated
in norm, uniformly for C ∈ B(H), ||C || ≤ 1, by finite sums of the form

∑

μ,ν,i,k

cμ,ν,i,k (∂μ A)(xi ) C (∂ν B)(yk) ,

where cμ.ν,i,k are constants which do not depend on C . Since the operators (∂μ A)(xi ),
(∂ν B)(yk) are bounded, the stated continuity properties of the map with respect to C
then follow. 
�

Within this general setting, the Rieffel deformations of the C∗–dynamical system
(C, R

n) [28] can be presented as follows. Let C∞ ⊂ C be the ∗–algebra of smooth
elements with respect to the action of α and let Q be a real skew symmetric matrix
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relative to the chosen bilinear form on R
n , i.e. x Qy = −yQx , x, y ∈ R

n . One then
considers for A, B ∈ C∞ the functions in C∞ given by

x �→ AαQ (x)
.= αQx (A) , y �→ Bα(y)

.= αy(B)

and sets

A ×Q B
.= AαQ × Bα , A, B ∈ C∞.

It has been shown by Rieffel [28] that ×Q defines an associative product on C∞, the
Rieffel product, which is compatible with the ∗–operation. In view of the normaliza-
tion of the bilinear form chosen in Lemma 2.1 (i), the original identity operator 1 still
acts as the identity with respect to the new product ×Q . Moreover, there exists a C∗–
norm on the deformed algebra (C∞,×Q). It is of interest here that, by Lemma 2.1, the
Rieffel product extends to more general functions in C in a natural manner. We shall
take advantage of this fact in the following subsection.

2.2. Warped convolution. We turn now to the discussion of the warped convolution on
(C, R

n) introduced in [13]. Many of the results below were stated there and provided
with sketches of proofs; in addition to supplying complete proofs of those assertions,
here we also prove results which strengthen and complement those discussed in [13].

The weakly continuous unitary representation U of R
n implementing α enters into

the definition of the warped convolution. In a first step we want to give proper meaning
to the formal expressions

∫
B αQx (A) d E(x) and

∫
B d E(x) αQx (A), A ∈ C∞, where Q

is any real n × n matrix, E is the spectral resolution of U and B ⊂ R
n is any bounded

Borel set. If F is a finite–dimensional projection, it follows from the spectral calculus
that the integrals

∫
B αQx (A) Fd E(x) and

∫
B d E(x)F αQx (A) are well–defined in the

strong operator topology. Moreover, since U (y) = ∫
eixy d E(x), y ∈ R

n , one obtains
for any test function f as in Lemma 2.1,
∫

B
αQx (A) Fd E(x) = lim

ε→0
(2π)−n

∫∫
dxdy f (εx, εy)e−i xy αQx (A) F E(B)U (y) ,

∫

B
d E(x) FαQx (A) = lim

ε→0
(2π)−n

∫∫
dxdy f (εx, εy)e−i xy E(B)U (x)F αQy(A).

Hence, adopting the notation in Lemma 2.1,
∫

B
αQx (A) Fd E(x) = AαQ × FUB ,

∫

B
d E(x) FαQx (A) = UB F × AαQ ,

where we have introduced the function x �→ UB(x)
.= E(B) U (x), which is an ele-

ment of C∞ since the set B is bounded. Choosing any net of projections F converging
monotonically to the identity operator 1, it follows from part (iv) of Lemma 2.1 that the
right-hand side of these equalities converges in the strong operator topology. Hence the
corresponding limits of the integrals on the left-hand side exist in B(H) and can be used
to define the warped convolution integrals as

∫

B
αQx (A) d E(x)

.= lim
F↗1

∫

B
αQx (A) F d E(x) = AαQ × UB ,

∫

B
d E(x) αQx (A)

.= lim
F↗1

∫

B
d E(x) FαQx (A) = UB × AαQ .

(2.2)
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If the spectrum sp U of U is compact, the integrals do not depend on B if B ⊃ sp U ,
so one can proceed to the limit B ↗ R

n in B(H). In the general case, however, we
have a priori no control on the continuity properties of the resulting operators. In order
to cope with this problem, we consider the dense domain D ⊂ H of vectors which are
smooth with respect to the action of U . Let P = (P1, . . . , Pn) be the generators of U
and let

x �→
(

URn(1 + P2)−n−1
)

(x)
.= U (x)(1 + P2)−n−1.

This function is an element of C which is n +1 times continuously differentiable. Making
use of the first half of part (iv) of Lemma 2.1, we thus get for � ∈ D,

(
AαQ × UB

)
� = (

AαQ × UB
)
(1 + P2)−n−1 (1 + P2)n+1�

=
(

AαQ × E(B) URn(1 + P2)−n−1
)

(1 + P2)n+1�.

In the latter expression we can proceed to the limit B ↗ R
n according to the second

half of part (iv) of Lemma 2.1, since the projections E(B) converge strongly to 1 in this
limit. In view of relation (2.2), this proves the existence of the first type of integrals,

∫
αQx (A) d E(x)�

.= lim
B↗Rn

∫

B
αQx (A) d E(x)�

=
(

AαQ × URn(1 + P2)−n−1
)

(1 + P2)n+1�. (2.3)

Part (iii) and the first half of part (iv) of Lemma 2.1 imply that the functions x �→
αx

(
AαQ × URn(1 + P2)−n−1

) = U (x)AαQ U (x)−1 × URn(1 + P2)−n−1 are elements
of C∞, since x, y �→ (U (x)AαQ U (x)−1)(y) = αx+Qy(A) is smooth in both variables.
So it is also clear that the domain D is stable under the action of the integrals.

For the proof of existence of the second type of integrals, we make use of the fact
that the functions x �→ αx

(
(1 + P2)n+1 A(1 + P2)−n−1

)
, A ∈ C∞ are elements of C∞.3

Thus, by the first half of part (iv) of Lemma 2.1, we get for � ∈ D,
(
UB × AαQ

)
� = (

UB × AαQ

)
(1 + P2)−n−1(1 + P2)n+1�

=
(

UB × (1+ P2)−n−1(1+ P2)n+1 AαQ (1+ P2)−n−1
)

(1+ P2)n+1�

=
(

URn E(B)(1 + P2)−n−1 × (1 + P2)n+1 AαQ (1 + P2)−n−1
)

×(1 + P2)n+1�,

where in the latter expression we can proceed again to the strong limit E(B) ↗ 1 if
B ↗ R

n . In view of relation (2.2), this proves existence of the strong limits
∫

d E(x) αQx (A)�
.= lim

B↗Rn

∫

B
d E(x) αQx (A)�

=
(

URn(1 + P2)−n−1 × (1 + P2)n+1 AαQ (1 + P2)−n−1
)

×(1 + P2)n+1�.

3 This can be seen by pulling the components of P through from the left to the right of A, noticing that
their commutators with A yield derivatives of A.
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By a similar argument as before, one finds that the domain D is stable under the action
of the second type of integrals, as well.

It follows at once from the preceding results and Lemma 2.1 that one can conveniently
present the two types of integrals on the domain D in terms of the strong limits

∫
αQx (A) d E(x)� = lim

ε→0
(2π)−n

∫∫
dxdy f (εx, εy) e−i xy αQx (A) U (y)� ,

∫
d E(x) αQx (A)� = lim

ε→0
(2π)−n

∫∫
dxdy f (εx, εy) e−i xy U (x) αQy(A)�.

(2.4)

We shall make use of these relations throughout the subsequent analysis.
In the following, we limit ourselves to the particularly interesting case where the

matrix Q entering into the definition of the integrals is skew symmetric relative to the
chosen bilinear form on R

n . It is understood without further mention that the integrals
are defined on the common stable domain D.

Lemma 2.2. Let Q be any real skew symmetric matrix on R
n and let A ∈ C∞. Then

(i)
∫

d E(x) αQx (A) = ∫
αQx (A) d E(x) and

(ii)
(∫

αQx (A) d E(x)
)∗ ⊃ ∫

αQx (A∗) d E(x).

Proof. (i) As pointed out above, one has for � ∈ D,
∫

αQx (A) d E(x)� = lim
ε→0

(2π)−n
∫∫

dxdy f (εx, εy) e−i xy αQx (A) U (y)�.

The integration can be restricted to the submanifold (ker Q)⊥ × (ker Q)⊥, since the
remaining integrals merely produce factors of 2π . Substituting x → x + Q−1 y and
taking into account that Q−1 is skew symmetric, one gets

∫∫
dxdy f (εx, εy) e−i xy αQx (A) U (y)

=
∫∫

dxdy g(εx, εy) e−i xy U (y)αQx (A)

=
∫∫

dxdy g(εy, εx) e−i xy U (x) αQy(A) ,

where g(x, y)
.= f (x + Q−1 y, y). In the limit ε → 0 one obtains

lim
ε→0

(2π)−n
∫∫

dxdy g(εy, εx) e−i xy U (x) αQy(A)� =
∫

d E(x) αQx (A)� ,

proving assertion (i).
(ii) For the proof of the second assertion, note that

(∫∫
dxdy f (εx, εy) e−i xy αQx (A) U (y)

)∗

=
∫∫

dxdy f (εx, εy) eixy U (−y) αQx (A∗)

=
∫∫

dxdy f (εy,−εx) e−i xy U (x) αQy(A∗).
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Hence, for �,� ∈ D,

〈�,

∫
αQx (A) d E(x)�〉= lim

ε→0
(2π)−n〈�,

∫∫
dx dy f (εx, εy) e−i xy αQx (A) U (y)�〉

= lim
ε→0

(2π)−n〈
∫∫

dx dy f (εy,−εx) e−i xy U (x) αQy(A∗)�,�〉

= 〈
∫

d E(x) αQx (A∗)�,�〉.

The assertion now follows from the preceding step. 
�
We may therefore meaningfully declare the following definition as in [13].

Definition 2.3. Let Q be a real skew symmetric matrix on R
n and let A ∈ C∞. The

corresponding warped convolution AQ of A is defined on the domain D by means of the
preceding results according to

AQ
.=

∫
d E(x) αQx (A) =

∫
αQx (A) d E(x).

In particular, 1Q = 1.

We shall next show that the warped convolution provides a representation of the
algebra (C∞,×Q) defined by A �→ πQ(A)

.= AQ . The argument proceeds through a
number of steps. It is apparent from the definition that the map πQ is linear and, by the
second part of the preceding lemma, we have πQ(A)∗ ⊃ πQ(A∗). The proof that πQ is
also multiplicative requires more work.

Lemma 2.4. Let Q be a real skew symmetric matrix on R
n and let A, B ∈ C∞. Then

(understood as an equality on D)

AQ BQ = (A ×Q B)Q ,

where ×Q denotes the Rieffel product on C∞. In other words,

πQ(A)πQ(B) = πQ(A ×Q B).

Proof. Let f, g be test functions as in Lemma 2.1. Recalling that A ×Q B ∈ C∞ can be
approximated in norm according to

A ×Q B = lim
δ→0

(2π)−n
∫∫

dvdw f (δv, δw) e−ivw αQv(A)αw(B) ,

one finds for � ∈ D,

(2π)2n(A ×Q B)Q� = lim
ε,δ→0

∫∫∫∫
dvdwdxdy f (δv, δw)g(εx, εy)

×e−ivw−i xy αQv+Qx (A)αw+Qx (B) U (y)� ,

in the sense of strong convergence. Similarly, one has

(2π)2n AQ BQ� = lim
ε,δ→0

∫∫∫∫
dvdwdxdy g(εv, εw) f (δx, δy)

×e−ivw−i xyαQv(A) U (w) αQx (B) U (y)�.
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In both cases the limits are to be performed in the given order. In order to see that
these limits coincide, one rewrites the two integrals. For the first one, by substituting
(v,w) → (v − x, w − Qx) and bearing in mind that Q is skew symmetric, one obtains

∫∫∫∫
dvdwdxdy f (δv, δw)g(εx, εy) e−ivw−i xy αQv+Qx (A)αw+Qx (B) U (y)�

=
∫∫∫∫

dvdwdxdy hδ,ε(v,w, x, y) e−ivw−i x(y+Qv−w) αQv(A) αw(B) U (y)� ,

where hδ,ε(v,w, x, y)
.= f (δ(v − x), δ(w − Qx)) g(εx, εy) . For the second integral,

by substituting (w, y) → (w − Qx, y + Qx − w) and making use again of the fact that
Q is skew symmetric, one finds

∫∫∫∫
dvdwdxdy g(εv, εw) f (δx, δy) e−ivw−i xyαQv(A) U (w) αQx (B) U (y)�

=
∫∫∫∫

dvdwdxdy kδ,ε(v,w, x, y) e−ivw−i x(y+Qv−w) αQv(A) αw(B) U (y)� ,

where kδ,ε(v,w, x, y) = f (δx, δ(y+Qx−w))g(εv, ε(w−Qx)). Thus the two integrals
coincide apart from the mollifying test functions hδ,ε and kδ,ε, respectively.

In order to show that the two integrals have the same limits, one proceeds as in the
proof of part (i) of Lemma 2.1. Again one finds by Fourier transformation that for any
given polynomial L on R

4n there is a corresponding polynomial P such that

L(v,w, x, y) e−ivw−i x(y+Qv−w) = P(−∂v,−∂w,−∂x ,−∂y) e−ivw−i x(y+Qv−w).

A convenient choice for L is given by

L(v,w, x, y) = (Ln(v)Ln(w)Ln(x)Ln(y))−1 , (2.5)

where Ln are the mollifiers introduced before. With this choice one gets by partial
integration, setting u

.= (v,w, x, y), du = dvdwdxdy and ∂
.= (∂v, ∂w, ∂x , ∂y),

∫∫∫∫
du hδ,ε(u) e−ivw−i x(y+Qv−w) αQv(A) αw(B) U (y)�

=
∫∫∫∫

du e−ivw−i x(y+Qv−w) P(∂) hδ,ε(u) L(u)−1αQv(A) αw(B) U (y)�.

The derivatives in the second line are well–defined, since A, B ∈ C∞ and � ∈ D. More-
over, all derivatives of u �→ L(u)−1 are absolutely integrable, and the derivatives of
u �→ hδ,ε(u) produce factors of δ and ε, respectively. Thus in the limit of small δ and ε

one can replace in the above integral the test function hδ,ε by its value at the origin, i.e.
1. The same argument applies if one replaces hδ,ε by kδ,ε, proving equality of the limits
of the respective integrals. 
�

At this point, the operators πQ(A) = AQ , A ∈ C∞, are well–defined only on the
dense, invariant domain D, defining there a ∗–algebra. We next show that they may be
extended to bounded operators on H, in contradiction to an assertion made in [13]. In
the proof we make use of the fact that the algebra (C∞,×Q) admits a C∗–norm || · ||Q ,
cf. [28, Ch. 4]. It thus can be completed to a C∗–algebra, denoted by (CQ,×Q), to
which the group of automorphisms αx , x ∈ R

n , extends in a strongly continuous manner
[28, Prop. 5.11].

As is well known, every positive element of a C∗–algebra has a positive square root
in the algebra. We need here the following more detailed information.
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Lemma 2.5. Let A ∈ C∞ be strictly positive in (CQ,×Q), i.e. A − δ 1 = B∗ ×Q B for
some δ > 0 and B ∈ (CQ,×Q). Then its positive square root

√
A ∈ (CQ,×Q) is also

an element of C∞.

Proof. The form of A implies that its spectrum is contained in the interval [δ, ‖A‖Q].
As the square root z �→ √

z is holomorphic in a complex neighborhood of this region and
C∞ is closed under the holomorphic calculus [28, Cor. 7.6], it follows that

√
A ∈ C∞.


�
With the help of this lemma we can show now that the operators πQ(A) = AQ ,

A ∈ C∞ are bounded. For the operators (δ + a)21 − A∗ ×Q A, a
.= ‖A‖Q , are elements

of C∞ and strictly positive in (CQ,×Q) for every δ > 0. Thus their positive square roots
B

.= √
(δ + a)21 − A∗ ×Q A ∈ (CQ,×Q) are elements of C∞ according to the preced-

ing lemma. Bearing in mind the properties of πQ established thus far, we therefore have
for any � ∈ D,

(δ + a)2‖�‖2 − ‖πQ(A)�‖2

=〈�,πQ

(
(δ + a)21 − A∗ ×Q A

)
�〉=〈�,πQ(B∗ ×Q B)�〉=‖πQ(B)�‖2 ≥0,

where we made use of the fact that B∗ = B since B is positive. Hence we obtain
‖πQ(A)�‖ ≤ (‖A‖Q + δ) ‖�‖, � ∈ D. Since D is dense in H and δ > 0 was arbitrary,
we conclude that the operators πQ(A) can be extended to the whole Hilbert space with
operator norms satisfying the bound

‖πQ(A)‖ ≤ ‖A‖Q , A ∈ C∞. (2.6)

Moreover, it follows from this estimate and the preceding results that the representation
πQ : C∞ → B(H) can be continuously extended to a representation of the C∗–algebra
(CQ,×Q) on H. We summarize these findings.

Theorem 2.6. The map

πQ(A)
.= AQ , A ∈ C∞ ,

extends to a representation of the Rieffel–deformed C∗–algebra (CQ,×Q) on H. In
particular, one has the bound

‖πQ(A)‖ ≤ ‖A‖Q , A ∈ (CQ,×Q).

Example. Of particular interest in physics are the cases where the spectrum of U con-
tains an atomic part. Without loss of generality one may then assume that {0} is part
of the atomic spectrum with corresponding invariant vector 
.4 Since the algebra C∞
is weakly dense in B(H), it is clear that 
 is cyclic for C∞; moreover, because of the
invariance of 
 under the action of U , one also has C∞
 ⊂ D. Within this setting the

4 Note that proceeding from the group U (x) to the group Uq (x) = eiqx U (x), x ∈ R
n , merely amounts to

a translation A → αQq (A) of the operators A in the original warped convolution.
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relation between the warped convolutions and the Rieffel deformations can be exhibited
quite easily. For, as a consequence of the invariance of 
, one obtains for A, B ∈ C∞,

AQ B
 = lim
ε→0

(2π)−n
∫∫

dxdy e−i xy f (εx, εy) αQx (A) U (y) B


= lim
ε→0

(2π)−n
∫∫

dxdy e−i xy f (εx, εy) αQx (A) αy(B)


= (A ×Q B)
.

In particular,

AQ
 = A
, A ∈ C∞. (2.7)

Making use of the associativity of the product ×Q on C∞, it is therefore clear that for
A, B, C ∈ C∞,

AQ BQ C
 = AQ (B ×Q C)
 = (A ×Q B ×Q C)
 = (A ×Q B)Q C
.

We return now to the discussion of the general case and exhibit further interesting
properties of the representations πQ introduced above.

Proposition 2.7. Let πQ be the representation of the C∗–algebra (CQ,×Q) established
by the preceding theorem.

(i) πQ is α–covariant, i.e. for any A ∈ (CQ,×Q)

πQ(αx (A)) = U (x)πQ(A)U (x)−1, x ∈ R
n .

(ii) πQ induces a bijective map of C∞ onto itself.
(iii) πQ is faithful, i.e. ‖πQ(A)‖ = ‖A‖Q, A ∈ (CQ,×Q).
(iv) πQ is irreducible.

Proof. (i) Let A ∈ C∞. Since the domain D is stable under the action of the unitaries
U (x), relation (2.3) and Lemma 2.1 imply U (x)AQU (x)−1 = (αx (A))Q , proving the
assertion for A ∈ C∞. The continuity properties of πQ and the automorphic action of
αx on (CQ,×Q) then yield assertion (i).

(ii) According to [28, Thm. 7.1], the smooth elements of (CQ,×Q) are exactly the
elements of C∞. It therefore follows from the continuity of the map πQ that the func-
tions x �→ πQ(αx (A)), A ∈ C∞, are smooth; hence πQ(A) = AQ ∈ C∞ for A ∈ C∞.
The proof that πQ � C∞ is bijective requires a computation: In view of the preceding
observation, one may apply the warping procedure with underlying matrix −Q to the
operator AQ , giving (AQ)−Q . Now according to relation (2.4) one has on the domain D,

(2π)2n (AQ)−Q

= lim
ε,δ→0

∫∫∫∫
dvdwdxdy f (εv, εw) f (δx, δy) e−ivw−i xy αQx−Qv(A)U (y)U (w) ,

where the limits are to be performed in the given order. Substituting (v,w) → (x −v,

w − y), the integral can be transformed into
∫∫∫∫

dvdwdxdy f (ε(x − v), ε(w − y)) f (δx, δy) eivw−i xw−iyv αQv(A)U (w).
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As the x, y–integration in the latter integral involves only ordinary functions, it is
straightforward to compute its limit for δ → 0, giving

(2π)n
∫∫

dvdw (1/ε)2n f̂ (w/ε,−v/ε) e−ivw αQv(A)U (w),

where f̂ denotes the Fourier transform of f . It is also apparent that the latter expres-
sion converges to (2π)2n A as ε → 0. Hence (AQ)−Q = A for A ∈ C∞. Now if
πQ(A) = AQ = 0, it follows that A = (AQ)−Q = 0, so πQ � C∞ is injective; similarly,
interchanging the role of Q and −Q, one has πQ(A−Q) = (A−Q)Q = A, so πQ � C∞
is also surjective.

(iii) Since πQ is α–covariant, its kernel ker πQ is α–invariant. Hence, in view of
the strongly continuous action of α on (C∞,×Q), the space ker πQ

⋂
C∞ is dense in

ker πQ . But this space coincides with {0}, since πQ � C∞ is injective according to the
preceding result. Consequently, ‖πQ( · )‖ defines a C∗–norm on (CQ,×Q), which must
coincide with ‖ · ‖Q because of the uniqueness of such norms.

(iv) The final assertion follows from the fact that πQ � C∞ is surjective. So its range
contains C∞, which is weakly dense in B(H). 
�

Let us turn now to the case of an abstractly given C∗–dynamical system (A, R
n)

equipped with some strongly continuous representation α : R
n → Aut A. Denoting

by A∞ the smooth elements of A, one obtains by arguments given by Rieffel [28] and
sketched at the end of Sect. 2.1 a deformed ∗–algebra (A∞,×Q) with C∗–norm ‖ · ‖Q

for any given skew symmetric matrix Q. Its C∗–completion will be denoted (AQ,×Q).
Here we have used Q as an upper index in order to distinguish the abstract setting from
the concrete one used thus far.

Let (π,H) be an α–covariant representation of A on a Hilbert space H, i.e. on H
there exists a weakly continuous unitary representation U of R

n such that

U (x)π(A)U (x)−1 = π(αx (A)) , A ∈ A. (2.8)

Consequently π(A∞) ⊂ C∞, so one can define for any A, B ∈ A∞ the operators
π(A) Q ∈ C∞ and the product π(A)×Q π(B); moreover, π(A)×Q π(B) = π(A×Q B).

After having established the properties of the warping procedure on C∞, it is almost
evident that the covariant representation (π,H) of A induces a covariant representation
(π Q,H) of (AQ,×Q). It is fixed by setting

π Q(A)
.= π(A)Q , A ∈ A∞. (2.9)

By Theorem 2.6, the operatorsπ Q(A) are bounded. Moreover, it follows from Lemma 2.2
that

π Q(A)∗ = (π(A)Q)∗ = (π(A)∗)Q = π(A∗)Q = π Q(A∗).

Similarly, Lemma 2.4 implies

π Q(A)π Q(B)=π(A)Qπ(B)Q =(π(A) ×Q π(B))Q =π(A ×Q B)Q =π Q(A ×Q B).

Finally, one may employ the analogue of Lemma 2.5 in the abstract setting and the
reasoning thereafter to obtain ‖π Q(A)‖ ≤ ‖A‖Q , A ∈ A∞. Hence the homomorphism
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π Q : A∞ → B(H) can be extended by continuity to a representation of (AQ,×Q), as
claimed. From the first part of Proposition 2.7 it follows that

U (x)π Q(A)U (x)−1

= U (x)π(A)QU (x)−1 = (U (x)π(A)U (x)−1)Q = π(αx (A))Q = π Q(αx (A)) ,

for all A ∈ A∞. So the representation π Q is also covariant, hence π Q(A∞) ⊂ C∞.
Depending on the properties of the chosen representation (π,H) of A, the map π Q :
A∞ → C∞ may not be injective or surjective. But according to part (ii) of the preceding
proposition one has π(A)Q = 0 if and only if π(A) = 0, A ∈ A∞. Furthermore, in
view of the continuity of the action α on A and AQ , the inclusions ker π

⋂
A∞ ⊂ ker π

and ker π Q ⋂
A∞ ⊂ ker π Q are dense in the norms ‖ · ‖ and ‖ · ‖Q , respectively. Thus

it follows that π Q is faithful if and only if π is faithful.

Theorem 2.8. Let (π,H) be an α–covariant representation of the C∗–algebra A. The
homomorphism π Q : A∞ → B(H), fixed by the relation

π Q(A)
.= π(A) Q , A ∈ A∞ ,

extends continuously to an α–covariant representation of the C∗–algebra (AQ,×Q).
Moreover, π Q is faithful if and only if π is faithful.

So the warping method provides a representation of the deformed algebras in the same
Hilbert space as the undeformed algebra, enabling the direct comparison of deformed
operators corresponding to different Q. This point will prove to be useful in the physical
context treated below.

2.3. Further properties of warped convolutions. Even though the warped convolutions
may be viewed as merely generating certain specific representations of Rieffel algebras,
it will be advantageous to base the subsequent discussion directly on them without refer-
ring to the Rieffel setting. The reasons for this are threefold: (a) It will be necessary to
deal with subalgebras of the algebra of smooth operators which are not invariant under
the automorphic action of the translations. So there is no corresponding Rieffel algebra,
but the warping procedure is still meaningful. (b) It will be necessary to consider warped
operators AQ, A′

Q′ and their sums and products for different matrices Q, Q′. Such oper-
ations can be carried out in the framework of warped convolutions more easily than
in the Rieffel setting, where one has to use Hilbert modules instead of Hilbert spaces.
(c) We shall need to establish algebraic properties of the warped operators arising from
spectral properties of the unitary representation U , which are not available in the Rieffel
setting.

Returning to the Hilbert space framework, we first exhibit some general covariance
properties of the warped convolutions, cf. [13]. To this end we consider (anti)unitary
operators V whose adjoint actions on the translations U induce linear transformations
of R

n . It follows at once that for any such V the algebra C∞ is stable under the corre-
sponding adjoint action, V C∞V −1 = C∞, and V D = D. The following result is the
first instance where we must deal with warped convolutions for different choices of the
underlying matrix Q.
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Proposition 2.9. Let V be a unitary or antiunitary operator onH such that V U (x)V −1 =
U (Mx), x ∈ R

n, for some invertible matrix M. Then, for A ∈ C∞,

V AQ V −1 = (V AV −1) σ M QMT ,

where MT is the transpose of M with respect to the chosen bilinear form, σ = 1 if V is
unitary and σ = −1 if V is antiunitary.

Proof. Making use of relation (2.4) for real f , one commences from the equalities of
strong integrals

V
∫∫

dxdy e−i xy f (εx, εy) αQx (A) U (y) V −1

=
∫∫

dxdy e−iσ xy f (εx, εy) αM Qx (V AV −1) U (My)

=
∫∫

dxdy e−i xy f (εσ MT x, εM−1 y) ασ M QMT x (V AV −1) U (y) ,

where the last equality is obtained by substituting (x, y) → (σ MT x, M−1 y). Applying
these relations to any vector � ∈ D and taking into account V −1D = D, the assertion
follows in the limit of small ε. 
�

Next, we establish a result which is fundamental for the applications to physics. We
shall show that the warped convolutions preserve certain specific commutation proper-
ties of the operators in C∞ for appropriate choices of the underlying skew symmetric
matrices depending on the spectrum of the representation U [13].

Proposition 2.10. Let A, B ∈ C∞ be operators such that [αQx (A), α−Qy(B)] = 0 for
all x, y ∈ sp U. Then

[AQ, B−Q] = 0.

Proof. Returning to the definition of the warped convolutions by the spectral calculus
and making use of Lemma 2.2, one finds for vectors �,� with compact spectral support

〈�, AQ B−Q�〉 = lim
F,F ′↗1

〈�,

(∫
d E(x)FαQx (A)

)(∫
α−Qy(B)F ′d E(y)

)
�〉 ,

where F, F ′ are finite–dimensional projections. Now

〈�,

(∫
d E(x)FαQx (A)

)(∫
α−Qy(B)F ′d E(y)

)
�〉

=
∫∫

〈�, d E(x)FαQx (A) α−Qy(B)F ′d E(y)�〉

=
∫∫

〈�, d E(x)Fα−Qy(B) αQx (A)F ′d E(y)�〉 ,

where the step from the first to the second line is justified by the fact that the given
expression can be decomposed into a finite sum of product measures multiplied with
smooth functions. The second step is a consequence of the commutativity properties of
A and B. Introducing the notation u = (v,w, x, y) ∈ R

4n and picking any test function
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u �→ h(u) which is equal to 1 at 0, it follows from the spectral representation of U that
the latter integral is equal to

lim
ε→0

(2π)−2n
∫∫∫∫

du h(εu) e−ivx−iyw 〈�, U (v)Fα−Qy(B) αQx (A)F ′U (w)�〉.

Adopting now the arguments and notation in the final part of the proof of Lemma 2.4,
one finds that for the polynomial L (2.5) there exists a corresponding polynomial P such
that
∫∫∫∫

du h(εu) e−ivx−iyw 〈�, U (v)Fα−Qy(B) αQx (A)F ′U (w)�〉

=
∫∫∫∫

du e−ivx−iyw P(∂) h(εu) L(u)−1〈�, U (v)Fα−Qy(B) αQx (A)F ′U (w)�〉.

After having performed the differentiations in the last integral, one sees by an application
of the dominated convergence theorem that the composite limit ε → 0, F, F ′ ↗ 1 is
independent of the order in which the individual limits are carried out and also does not
depend on the choice of h. Thus one has, in particular,

〈�, AQ B−Q�〉
= lim

ε→0
(2π)−2n

∫∫∫∫
du h(εu) e−ivx−iyw 〈�, U (v)α−Qy(B) αQx (A)U (w)�〉.

As before, one takes advantage of the fact that the integration may be restricted to the
submanifold (ker Q)⊥ × · · · × (ker Q)⊥ ⊂ R

4n , since the remaining integrals merely
produce factors of 2π . So the preceding integral can be recast as

∫∫∫∫
du e−ivx−iyw h(εu) 〈�, U (v)α−Qy(B) αQx (A)U (w)�〉

=
∫∫∫∫

du e−ivx−iyw h(εu) 〈�, U (w)α−Qy+v−w(B) αQx+v−w(A)U (v)�〉

=
∫∫∫∫

du e−ivx−iyw k(εu) 〈�, U (w)α−Qy(B) αQx (A)U (v)�〉,

where k(v,w, x, y) = h(v,w, x − Q−1(v − w), y + Q−1(v − w)). The last equality is
the result of the substitution (x, y) → (x − Q−1(v −w), y + Q−1(v −w), under which
e−ivx−iyw does not change because of the skew symmetry of Q. Proceeding to the limit
of small ε, one obtains by relation (2.4) and Lemma 2.2,

lim
ε→0

(2π)−2n
∫∫∫∫

du e−ivx−iyw k(εu) 〈�, U (w)α−Qy(B) αQx (A)U (v)�〉
= 〈�, B−Q AQ�〉.

This shows that 〈�, AQ B−Q�〉 = 〈�, B−Q AQ�〉. Since �,� were arbitrary elements
of a dense set of vectors, the assertion now follows. 
�

We finally discuss the structure of the family of maps given by the warped convolu-
tions. According to Proposition 2.7 (ii), these maps act bijectively on C∞ and therefore
can be composed and have inverses. In fact, they form a group which is homomorphic
to R

n(n−1)/2, as can be seen from the next proposition.
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Proposition 2.11. Let Q1, Q2 be skew symmetric matrices. Then

(AQ1)Q2 = AQ1+Q2 , A ∈ C∞.

Proof. To begin, note that for any continuous bounded function f of the generator P
of U one has AQ f (P) = (A f (P))Q , as a consequence of relation (2.3) and part (iv) of
Lemma 2.1. Let � ∈ D be any vector with compact spectral support and let f be a test
function such that f (P)� = �. It follows that (AQ1)Q2� = (AQ1 f (P))Q2 f (P)�.
Picking nets of finite–dimensional projections F, F ′ converging to 1, making use of the
spectral calculus, which implies f (P) d E(z) = f (z) d E(z), z ∈ R

n , and recalling the
definition of the warped convolutions, one obtains in the sense of weak convergence

(AQ1)Q2� = lim
F ′↗1,F↗1

∫∫
f (x) f (y) αQ1x+Q2 y(A) Fd E(x)F ′d E(y)�.

Here the limits are taken in the given order and the (strong) limit F ↗ 1 has been inter-
changed with the y–integration by an application of the dominated convergence theorem.
Since the function x, y �→ f (x) f (y)αQ1x+Q2 y(A) is smooth and rapidly decreasing in
norm, one can interchange the limits. The product measure d E(x)F ′d E(y) converges
weakly in the sense of distributions to δ(x − y) dxd E(y) as F ′ ↗ 1, where δ(x − y) dx
is the Dirac measure at y; hence one obtains

(AQ1)Q2� = lim
F↗1

∫
α(Q1+Q2)x (A) Fd E(x) f (P)2� = AQ1+Q2�.

The desired conclusion then follows, because the space of vectors � with compact
spectral support is dense in H. 
�
Note that this result does not entail a composition law of the representations πQ of the
Rieffel algebras, since their ranges do not, in general, fit with their respective domains.

Further Results. Most of the preceding results can be established in a setting of
unbounded operators. One proceeds again from a continuous unitary representation
U of R

n and considers the ∗–algebra F of all operators F for which there is some
nF ∈ N such that the functions x �→ (1+ P2)−nF αx (F)(1+ P2)−nF are arbitrarily often
differentiable in norm. The operators F ∈ F are defined on the domain D and leave it
invariant. Making use of the fact that there is a version of Lemma 2.1 in this setting,
one can define the Rieffel product ×Q on F ; the warped convolutions of the elements
of F can be defined as well and are elements of F . Moreover, Lemmas 2.2 and 2.4 hold
without changes, so the warped convolutions define an (unbounded) ∗–representation of
(F ,×Q), and Propositions 2.9, 2.10 and 2.11 hold as well. We refrain from giving the
proofs here.

3. Warped Convolutions and Borchers Triples

We consider now warped convolutions in the context of Borchers triples, invented by
Borchers [3] for the construction and analysis of relativistic quantum field theories. This
setting is, on the one hand, more restrictive than the preceding one, since one deals with
unitary representations U of the translations R

n , n ≥ 2, with certain specific spectral
properties. On the other hand, one considers subalgebras of B(H) on which the adjoint
action α of U merely induces endomorphisms for semigroups of translations in the set
W .= {x = (x0, x1, . . . , xn−1) ∈ R

n : x1 ≥ |x0|}.



112 D. Buchholz, G. Lechner, S. J. Summers

Definition 3.1. A Borchers triple (R, U,
) (relative to W) consists of

(a) a von Neumann algebra R ⊂ B(H),
(b) a weakly continuous unitary representation U of R

n on H whose spectrum is con-
tained in the closed forward light cone V+ = {p = (p0, p1, . . . , pn−1) ∈ R

n :
p0 ≥

√
p2

1 + · · · + p2
n−1} and which satisfies αx (R) ⊂ R, x ∈ W ,

(c) and a unit vector 
 ∈ H which is invariant under the action of U and is cyclic and
separating for R.

By condition (c), Tomita–Takesaki theory [30,31] is applicable to the pair (R,
), and
we shall denote by �, J the associated modular operator and involution. In this context
Borchers [3] proved the following remarkable theorem (see [15] for a simpler proof).

Theorem 3.2. Let (R, U,
) be a Borchers triple relative to W . Denoting by ϑ(t),
t ∈ R, and j the transformations acting on x = (x0, x1, . . . xn−1) ∈ R

n by

ϑ(t) x
.= (cosh(2π t)x0 + sinh(2π t)x1, sinh(2π t)x0 + cosh(2π t)x1, x2, . . . , xn−1) ,

j x
.= (−x0,−x1, x2, . . . xn−1) ,

one has

(i) �i tU (x)�−i t = U (ϑ(t)x) for x ∈ R
n and t ∈ R,

(ii) JU (x)J = U ( j x) for x ∈ R
n.

Moreover, (R′, U,
) is a Borchers triple relative to −W , where R′ = JRJ is the
commutant of R.

Proof. The assertion for n = 2 is proven in [3]. Setting x⊥ = (0, 0, x2, . . . , xn−1),
conditions (b), (c) in Definition 3.1 imply U (x⊥)RU (x⊥)−1 = R and U (x⊥)
 = 
.
The uniqueness of the modular objects then entails that � and J both commute with all
U (x⊥), completing the proof in the general case. 
�

We shall show now that the family of Borchers triples is stable under the deformations
induced by warped convolutions corresponding to certain specific choices of the skew
symmetric matrix5 Q. Moreover, the modular objects of the deformed triples coincide
with those of the original one. This observation is of relevance in quantum field theory,
which will be discussed at the end of this section.

We begin with some technical remarks. Let C∞ be, as above, the ∗–algebra of all
smooth elements in B(H) under the adjoint action of the translations and let R∞ =
R

⋂
C∞. In view of condition (b) in Definition 3.1, one obtains elements of R∞ by

smoothing any element R ∈ R with Schwartz test functions f having support in W ,

R( f )
.=

∫
dx f (x) αx (R). (3.1)

These weak integrals are elements of R∞ since, by construction, they are smooth and
contained in the von Neumann algebra R. Choosing sequences fn of test functions with
support in W which approximate the Dirac measure at 0, one sees that R∞ is dense in
R in the strong operator topology, and consequently 
 is cyclic for R∞. By the same
reasoning one finds that 
 is also cyclic for R′∞ .= R′ ⋂ C∞.

5 Having in mind applications to quantum field theory, we choose henceforth the Lorentz product xy =
x0 y0 − ∑n−1

m=1 xm ym , x, y ∈ R
n , as the bilinear form on R

n .
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Now let Q be any real skew symmetric matrix on R
n which is W–compatible in the

sense that QV+ ⊂ W . This constraint on Q will become important in the following. The
corresponding warped operators AQ , A ∈ R∞, are defined as in the previous section.
Since they are bounded and satisfy AQ

∗ = A∗
Q , they generate a von Neumann algebra,

called a warped algebra for short. With a slight abuse of notation, we write

RQ
.= {AQ : A ∈ R∞}′′.

For the proof that the warped triple (RQ, U,
) is again a Borchers triple, we note
that, as a consequence of Proposition 2.9, one has αx (RQ) = αx (R)Q ⊂ RQ for x ∈ W .
So condition (b) in Definition 3.1 is satisfied. Furthermore, since 
 is cyclic for R∞, it
is also cyclic for RQ as a consequence of Eq. (2.7). In order to see that 
 is separating
for RQ , let A ∈ R∞, A′ ∈ R′∞. Then [αx (A), αy(A′)] = 0 for x ∈ W , y ∈ −W ,
and taking into account that Q sp U ⊂ Q V+ ⊂ W , it follows from Proposition 2.10
that [AQ, A′−Q] = 0. Thus (R′)−Q ⊂ (RQ)′. But Eq. (2.7) implies that 
 is cyclic for
(R′)−Q and thus a fortiori for (RQ)′. Hence 
 is separating for RQ , and condition (c)
in Definition 3.1 holds as well.

Theorem 3.3. Let (R, U,
) be a Borchers triple relative to W and let Q be
W–compatible. Then the resulting warped triple (RQ, U,
) is also a Borchers tri-
ple relative to W .

In view of this theorem, we may apply modular theory to the warped triple. We shall
show next that the corresponding modular objects coincide with the original ones. To
this end we need the following technical lemma.

Lemma 3.4. Let (R, U,
) be a Borchers triple relative to W and let S = J�1/2 be
the corresponding Tomita conjugation given by the closure of the map

S A 
 = A∗ 
, A ∈ R.

Then the subdomain R∞ 
 is a core for S.

Proof. Let R ∈ R and let fn be a sequence of real test functions with support in W such
that in the sense of strong convergence limn R( fn)
 = R 
, cf. relation (3.1) and the
remarks thereafter. Since R( fn) ∈ R∞ ⊂ R and

lim
n

S R( fn)
 = lim
n

R( fn)∗ 
 = lim
n

R∗( fn)
 = R∗ 
 = S R
,

the conclusion follows, because R
 is a core for S by definition. 
�
We are now in a position to establish the invariance of the modular objects of Borchers

triples under the warping procedure.

Theorem 3.5. Let (R, U,
) be a Borchers triple relative to W with modular objects
�, J , and let Q be a W–compatible matrix. Then the modular objects �Q, JQ asso-
ciated with the warped triple (RQ, U,
) coincide with those of the original triple,
i.e.

�Q = �, JQ = J.
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Proof. Let SQ be the Tomita conjugation associated with the warped triple (RQ, U,
)

and let S be the Tomita conjugation associated with (R, U,
). Since AQ ∈ RQ for
A ∈ R∞, Eq. (2.7) and Lemma 2.2 imply

SQ A
 = SQ AQ
 = (AQ)∗ 
 = (A∗)Q 
 = A∗ 
 = S A
.

According to the preceding lemma, R∞
 is a core for S, hence SQ ⊃ S. By the
Tomita–Takesaki theory [30,31], the adjoint SQ

∗ of SQ is theS Tomita conjugation
associated with ((RQ)′, U,
), and similarly S∗ is the Tomita conjugation associated
with (R′, U,
). It was shown in the proof of Theorem 3.3 that (R′)−Q ⊂ (RQ)′. Thus,
as A′−Q ∈ R′−Q for A′ ∈ R′∞, one obtains by another application of Eq. (2.7) and
Lemma 2.2,

SQ
∗ A′ 
 = SQ

∗ A′−Q 
 = (A′−Q)∗ 
 = (A′ ∗)−Q 
 = A′ ∗ 
 = S∗ A′ 
.

By the preceding lemma R′∞ 
 is a core for S∗, hence SQ
∗ ⊃ S∗ and consequently

S ⊃ SQ , since both conjugations are closed operators. Thus SQ = S and, by the unique-
ness of the polar decomposition, the desired conclusion follows. 
�

An immediate consequence of this theorem is the observation that

RQ
′ = R′−Q . (3.2)

Indeed, Theorem 3.2 and Proposition 2.9 imply JRQ J = (JRJ )− j Q j and it is also
straightforward to verify that j Q j = Q for any W–admissible matrix Q. Since J = JQ ,
the asserted equation then follows from Tomita–Takesaki theory.

Let us discuss now the physical significance of these findings. As was pointed out
in [3], Theorem 3.2 allows one to use the Borchers triple (R, U,
) as a building block
for the construction of a quantum field theory in two spacetime dimensions. Identifying
the cone W ⊂ R

2 defined above with the corresponding wedge shaped region in two–
dimensional Minkowski space, one interprets A(W)

.= R as the algebra generated by
observables which are localized in W . Moreover, noticing that the transformations ϑ(t),
t ∈ R, and j introduced in Theorem 3.2 have the geometrical meaning of Lorentz boosts
and spacetime reflection, respectively, one can consistently extend the representation U
of the translations R

2 to a continuous (anti)unitary representation of the proper Poincaré
group P+. It is given by

U (λ)
.= U (x)Jσ �i t , λ = (x, jσ ϑ(t)) ∈ P+ ,

where x ∈ R
2, t ∈ R and σ ∈ {0, 1}. Thus J represents the PCT–operator. With the

help of this representation one can define the algebras generated by observables in the
transformed wedge regions λW , λ ∈ P+ by setting

A(λW)
.= U (λ)RU (λ)−1 , λ ∈ P+.

This definition is consistent, since the stability group of the wedge W in P+ consists of
the boosts ϑ(t), t ∈ R, whose corresponding automorphic action leaves the algebra R
invariant according to Tomita–Takesaki theory. The resulting assignment W. �→ A(W.)

of wedge regions to algebras defines a net (pre–cosheaf) on R
2. It is Poincaré covari-

ant by construction and causal. In fact, since j maps the wedge W onto its spacelike
complement W ′ = −W , one has

A(W ′) = U ( j)A(W)U ( j)−1 = JRJ = R′ = A(W)′ ,
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where the third equality follows from Tomita–Takesaki theory. So the observables in
spacelike separated wedges commute, in accordance with the principle of Einstein cau-
sality. In this way any Borchers triple defines a relativistic quantum field theory in two
spacetime dimensions, cf. [3] for more details.

The upshot of these considerations is the insight that, as a consequence of the preced-
ing three theorems, the warped triples (RQ, U,
) generate in the same manner another
causal and covariant net W. �→ AQ(W.) by setting

AQ(λW)
.= U (λ)RQU (λ)−1 , λ ∈ P+.

Thus the warping procedure provides a tool for the consistent deformation of two–
dimensional quantum field theories without changing the underlying representation of
the Poincaré group. We shall further elaborate on this observation in the next section.

4. Warped Convolutions in Quantum Field Theory

In this section we examine applications of the warping procedure to relativistic quantum
field theories in more than two spacetime dimensions. Thus we interpret R

n , n > 2,
as Minkowski space equipped with the standard metric fixed by the Lorentz product,
cf. footnote 5. The identity component of its isometry group, the Poincaré group, is the
semidirect product P↑

+ = R
n

� L↑
+ of the spacetime translations R

n and the proper
orthochronous Lorentz transformations L↑

+.
In a manner similar to the preceding section, we describe the theories in the algebraic

setting of local quantum physics [20] by a qualified version of the concept of Borchers
triple. Additional constraints arise since, on the one hand, the group generated by the
translations, along with the boosts and reflection emerging from the modular structure
of the triple, does not act transitively on the set of wedge regions in R

n if n > 2.
The smallest subgroup of the Poincaré group which fulfills this condition is P↑

+ . So
one needs from the outset an action of this group on the underlying algebra R, which
one interprets again as the algebra of observables localized in the given wedge region
W .= {x = (x0, x1, . . . , xn−1) ∈ R

n : x1 ≥ |x0|}. On the other hand, one must ensure
that this action is consistent with the principle of Einstein causality, according to which
observables in spacelike separated regions must commute. The resulting consistency
conditions can be expressed in terms of the triple in an evident manner, cf. [2, Prop.
7.3.22]. They lead to the concept of a causal Borchers triple.

Definition 4.1. A causal Borchers triple (R, U,
) relative to W consists of

(a) a von Neumann algebra R ⊂ B(H),
(b) a weakly continuous unitary representation U of P↑

+ such that, λ ∈ P↑
+ ,

U (λ)RU (λ)−1 ⊂ R if λW ⊂ W ,

U (λ)RU (λ)−1 ⊂ R′ if λW ⊂ W ′,

and the spectrum of the abelian subgroup U � R
n of the spacetime translations is

contained in the closed forward lightcone V+,
(c) and a unit vector 
 ∈ H, describing the vacuum, which is invariant under the

action of U and is cyclic and separating for R.
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Remark. In two spacetime dimensions any Borchers triple determines a causal Borchers
triple by the modular construction in the preceding section. As there is no element in
P↑

+ which maps the wedge W into its spacelike (causal) complement W ′, the second
constraint in condition (b) is trivially satisfied in this case. In order to flip the wedge one
needs the spacetime reflection j , which is an element of P+ ⊃ P↑

+ . As we have seen,
its corresponding action on R is consistent with Einstein causality as a consequence of
modular theory. In higher dimensions one either has to posit causality from the outset,
as we do, or one has to impose additional constraints on the modular structure of the
triple which imply it, cf. [4,5,7,10,19].

With the above input one can define the algebras corresponding to arbitrary regions
in R

n in a straightforward manner, which we briefly recall. Making use of the fact that
P↑

+ acts transitively on the wedge regions, one begins with the wedge algebras by setting

A(λW)
.= U (λ)RU (λ)−1 , λ ∈ P↑

+ . (4.1)

This definition is consistent, since λ1W = λ2W implies that the transformation λ−1
2 λ1

is an element of the stability group of W , and R is stable under the adjoint action of
the corresponding unitary operators according to the first part of condition (b). Simi-
larly, if λ1W ⊂ λ2W , it follows that U (λ−1

2 λ1)RU (λ−1
2 λ1)

−1 ⊂ R, hence A(λ1W) ⊂
A(λ2W). Thus the family of wedge algebras complies with the condition of isotony. The
wedge algebras also transform covariantly under the adjoint action of the representation
U by their very definition. Moreover, if λ1W ⊂ (λ2W)′, then U (λ−1

2 λ1)RU (λ−1
2 λ1)

−1

⊂ R′ according to the second part of condition (b). Hence A(λ1W) ⊂ A(λ2W)′ in
accordance with Einstein causality. The algebras corresponding to arbitrary causally
closed convex regions O ⊂ R

n are determined from the wedge algebras A(W·) by set-
ting A(O) = ⋂

W·⊃O A(W·). It is apparent that the resulting assignment O �→ A(O)

inherits the structure of a causal and covariant net on R
n , i.e. of a local quantum theory

[20]. It should be noted, however, that within the present general framework the algebras
corresponding to bounded regions may happen to be trivial. We shall comment on the
physical significance of this possibility at the end of this section.

We now want to use our warping procedure to deform causal Borchers triples. Addi-
tional constraints on the underlying skew symmetric matrices arise due to the extra con-
ditions imposed on such triples. In fact, Q must have the following form with respect to
the coordinates chosen in the specification of the wedge W ⊂ R

n :

Q
.=

⎛

⎜⎜⎜⎜⎝

0 ζ 0 · · · 0
ζ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎠
(4.2)

for fixed ζ ≥ 0. In the special but physically most interesting case of n = 4 dimensions,
one can admit matrices of the more general form

Q
.=

⎛

⎜⎝

0 ζ 0 0
ζ 0 0 0
0 0 0 η

0 0 −η 0

⎞

⎟⎠



Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories 117

for fixed ζ ≥ 0, η ∈ R. Note that these matrices are skew symmetric with respect to the
Lorentz product. The following facts pointed out in [17] are crucial for the consistent
deformation of the triples and, in turn, determine the choice of the admissible matrices Q
[17, Lemma 2].

(i) Q V+ ⊂ W .
(ii) Let λ = (x,�) ∈ P↑

+ be such that λW ⊂ W . Then �Q�T = Q.
(iii) Let λ = (x,�)∈P↑

+ be such that λ W ⊂W ′. Then �Q�T =−Q.

Any matrix Q with these properties is said to be W–admissible (qualifying the notion
of W–compatibility introduced in the preceding section).

Given a causal Borchers triple (R, U,
) relative to W , we proceed as in the pre-
ceding section and define for fixed W–admissible matrix Q the warped von Neumann
algebra

RQ
.= {AQ : A ∈ R∞}′′.

The corresponding warped triple (RQ, U,
) is again a causal Borchers triple. For the
proof of this fact we make use of Proposition 2.9, according to which

U (λ)AQU (λ)−1 = (U (λ)AU (λ)−1)�Q�T , λ = (x,�) ∈ P↑
+ ,

for all A ∈ C∞. Taking into account properties (ii) and (iii) of Q given above, we
conclude that

U (λ)RQ U (λ)−1 = (U (λ)R U (λ)−1)Q ⊂ RQ if λW ⊂ W ,

U (λ)RQ U (λ)−1 = (U (λ)R U (λ)−1)−Q ⊂ (R′)−Q if λW ⊂ W ′.

But from Eq. (3.2) one has (R′)−Q = (RQ)′; hence the warped triple satisfies condition
(b) in Definition 4.1. In the proof of Theorem 3.3, it was shown that 
 is cyclic and
separating for RQ , so the triple also complies with condition (c).

Theorem 4.2. Let (R, U,
) be a causal Borchers triple relative to W and let Q be a
W–admissible matrix. The corresponding warped triple (RQ, U,
) is again a causal
Borchers triple relative to W .

So the deformations induced by the warped convolutions are consistent with the basic
principles of local quantum physics. It is noteworthy that also certain more specific fea-
tures persist under these deformations, such as the physically significant property of
wedge duality. This property can be encoded into a maximality condition on the Bor-
chers triple, which implies that the underlying algebra cannot be enlarged without coming
into conflict with causality.

Definition 4.3. Let (R, U,
) be a causal Borchers triple relative to W . The triple is said
to be maximally causal if U (λ)RU (λ)−1 = R′ for any λ ∈ P↑

+ such that λW = W ′.

It immediately follows from the definition of the wedge algebras that, under these cir-
cumstances, A(W·′) = A(W·)′ for all wedges W·, i.e. wedge duality obtains.

Proposition 4.4. Let (R, U,
) be a maximally causal Borchers triple relative to W
and let Q be a W–admissible matrix. Then the corresponding warped Borchers triple
(RQ, U,
) is also maximally causal.
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Proof. Let λ ∈ P↑
+ with λW = W ′. Then property (iii) of the W–admissible matrix Q,

Proposition 2.9 and the maximality condition imply that

U (λ)RQ U (λ)−1 = (U (λ)R U (λ)−1)−Q = R′−Q .

Equation (3.2) completes the proof. 
�
Let us turn now to the question whether the deformed Borchers triples generate new

theories. It is apparent that equivalent triples, as defined below, give rise to isomorphic
nets of observable algebras and therefore must be identified.

Definition 4.5. Let (R1, U1,
1) and (R2, U2,
2) be two causal Borchers triples. The
triples are equivalent if there exists an isometry V : H1 → H2 between the underly-
ing Hilbert spaces such that V R1 = R2V , V U1(λ) = U2(λ)V for all λ ∈ P↑

+ , and
V 
1 = 
2.

Note that the algebras encountered in Borchers triples are generically isomorphic to
the unique hyperfinite factor of type III1 and hence to each other. Thus the nontrivial
requirement in the definition is the condition that the isometry V intertwines, besides
the algebras, the respective representations of the Poincaré group.

Although one may expect that the warped Borchers triples are generally inequiv-
alent to the original ones, there does not yet exist an argument to that effect. It has
been shown in [13,17] that in theories describing massive particles the elastic scattering
matrix changes under these deformations, thereby providing a rather indirect proof that
the respective Borchers triples must be inequivalent. We present here an alternative argu-
ment, covering a large family of theories in more than two spacetime dimensions. It is
based on the following lemma, whose proof is given in the Appendix. There we also
comment on the additional physically meaningful spectral constraint on the translations
made in the hypothesis.

Lemma 4.6. Let (R, U,
) be a causal Borchers triple relative to W ⊂ R
n, n ≥ 3,

such that sp U � R
n contains some point in the interior of V+ and let Q �= 0 be a

W–admissible matrix of the generic form (4.2). Then 
 is cyclic for at most one of the
algebras

⋂
λ∈N αλ(R) and

⋂
λ∈N αλ(RQ), where N is any given neighborhood of the

identity in P↑
+ .

The following observation about the relation between Borchers triples and their
warped descendants is an immediate consequence of this result.

Proposition 4.7. Let (R, U,
) be a causal Borchers triple relative to W ⊂ R
n, n ≥ 3,

such that sp U � R
n contains some point in the interior of V+ and let 
 be cyclic for⋂

λ∈N αλ(R) for some neighborhood N of the identity in P↑
+ . Then (RQ, U,
) and

(R, U,
) are inequivalent for any W–admissible matrix Q �= 0 of the generic form
(4.2).

Proof. Let V be some unitary operator which intertwines the two triples. Then V
⋂

λ∈N
αλ(R) V −1 = ⋂

λ∈N αλ(V R V −1) = ⋂
λ∈N αλ(RQ). Hence 
 = V 
 is cyclic for

the latter algebra as well, in conflict with the preceding lemma. 
�
In the familiar examples of quantum field theories which have been rigorously con-

structed so far, such as (generalized) free field theories in physical spacetime and inter-
acting field theories in lower dimensions [16], the vacuum 
 is known to be cyclic for
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the algebras affiliated with compact spacetime regions (Reeh–Schlieder property). Thus,
applying the warping procedure to the corresponding Borchers triples, one ends up with
inequivalent, i.e. new theories. However, the local algebras in the deformed theories no
longer have the Reeh–Schlieder property, according to the preceding lemma. In fact,
even for the algebras affiliated with pointed spacelike cones, which are of relevance
in gauge theory [8], 
 is not cyclic. Thus in more than two spacetime dimensions the
warped algebras can, in general, not be interpreted in terms of some underlying point
fields.

Yet, as was pointed out in [13], the warped theories admit a meaningful physical
interpretation with respect to noncommutative Minkowski space (Moyal space). In fact,
the first examples of such theories appeared in that setting [17]. We recall that non-
commutative Minkowski space is described by coordinate operators Xμ satisfying the
commutation relations [Xμ, Xν] = i θμν 1, where θμν = −θνμ are real constants,
μ, ν = 0, 1, . . . , n − 1. It is straightforward to verify that in more than two dimen-
sions there always exist certain lightlike coordinates X± which commute and thus can
be simultaneously diagonalized. Hence it should be possible to localize fields and observ-
ables with respect to these coordinates, thereby dislocalizing them in the remaining ones.
In particular, the wedges W considered here are possible localization regions in noncom-
mutative Minkowski space, whereas bounded regions and pointed spacelike cones are
not. On the basis of this interpretation, the algebras corresponding to the latter regions
are expected to be trivial, in line with the preceding lemma. Now, apart from the wedges,
there are other cylindrical regions (such as the intersections of opposite wedges) which
are possible localization regions. It is therefore an intriguing question whether the cor-
responding algebras in the warped theories are nontrivial. An affirmative answer would
support their interpretation in terms of noncommutative Minkowski space. We hope to
return to this problem elsewhere.

5. Conclusions

In this investigation we have clarified the relation between the warped convolution
of C∗–dynamical systems, proposed in [13], and the strict deformation of such sys-
tems, established by Rieffel [28]. It turned out that, for fixed deformation matrix Q,
the warped convolution induces a faithful covariant representation of the correspond-
ing Rieffel algebra, if the original dynamical system is given in a faithful covariant
representation. Thus, from this point of view, the warped convolution provides little
new information. Yet, whereas the Rieffel deformations were introduced for the pur-
pose of quantizing classical systems with Poisson bracket given by a fixed Q, warped
convolutions were conceived for the deformation of quantum field theories. Within the
latter framework one must deal simultaneously with a multitude of different deforma-
tion matrices Q and establish relations between the resulting operators. The warping
procedure is more appropriate in this context, since all warped deformations of a given
dynamical system are concretely presented in a single Hilbert space, irrespective of the
choice of Q.

For the discussion of the field theoretic aspects it has proven to be convenient to make
use of the concept of causal Borchers triples (R, U,
). The algebras of observables
attached to arbitrary regions in Minkowski space can be reconstructed from any such
triple, thereby specifying a covariant and causal quantum theory. Within this setting
the problem of constructing a theory thus presents itself as follows. One first has to
devise a continuous unitary representation U of the Poincaré group on some Hilbert
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space which satisfies the relativistic spectrum condition with vacuum vector 
. This
task can be accomplished, e.g., by specifying the stable particle content of the theory
and performing the standard Fock space construction. In a second step one must exhibit
a von Neumann algebra R on this space satisfying certain specific compatibility condi-
tions with respect to the action of U , which allow one to interpret R as an algebra of
observables localized in a given wedge region of Minkowski space. It should be noted
that the nets of local observable algebras appearing in any quantum field theory can be
realized in this way.

Disregarding systems with an unreasonably large number of local degrees of free-
dom, the algebraic structure of R is known to be model independent, i.e. the algebras
corresponding to different theories are isomorphic [6]. One may thus take as prototype
the von Neumann algebra R0 generated by free (non–interacting) fields on Fock space
which are smeared with test functions having support in the given wedge region. Despite
this concrete setting, the problem of identifying other proper examples of such algebras
R is notoriously difficult. The strategy pursued in the present investigation is based on
the general idea of deforming a given causal Borchers triple, such as (R0, U,
), without
changing the representation U . The warping procedure provides a consistent method to
that effect. It leads to a family of new examples of causal Borchers triples in any number
of spacetime dimensions.

However, the deformations of Borchers triples obtained by the warping procedure are
rather special and of limited physical interest. It therefore seems worthwhile to fathom
the potential of the general idea underlying this construction. Since the representation
U of P↑

+ induces the pertinent constraints on the admissible algebras R, one may try to
generalize the formula for the warped deformations by the ansatz

A
.=

∫∫
dλ dλ′ K (λ, λ′) αλλ′(A0) L(λ, λ′) , A0 ∈ R0 ,

where dλ denotes the Haar measure on P↑
+ (or a subgroup thereof) and K , L are suitable

operator valued kernels. The consistency conditions on the algebra R generated by the
deformed operators can then be re-expressed in terms of transformation properties of
these kernels under the adjoint action of the representation U .

In two spacetime dimensions these constraints simplify considerably. There it suf-
fices if the kernels K , L transform covariantly under the adjoint action of the unitary
representation U of P↑

+ and 
 is cyclic and separating for the resulting deformed von
Neumann algebra R. One may then proceed as in Sect. 3 and extend the representation
U to a representation of P+ by adding to it the modular conjugation associated with
(R,
) which can be interpreted as PCT–operator. The algebras corresponding to arbi-
trary wedges can be obtained from R by the adjoint action of the resulting (anti)unitary
representation of P+. Indeed, there is evidence that a large family of integrable models
on two–dimensional Minkowski space, considered by one of us, can be subsumed in this
manner [24,25].

The prospect of finding other interesting deformations of this kind also in higher
spacetime dimensions seems promising. Moreover, the method can also be transferred
to quantum field theories on curved spacetimes having a sufficiently large isometry group
[14]. Thus the algebraic methods presented here shed new light on the yet unsolved con-
structive problems in relativistic quantum field theory.

Acknowledgements. GL wishes to thank S. Waldmann for interesting discussions about Rieffel deformations.
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Appendix

We give here the proof of Lemma 4.6, which concludes that, given any neighborhood
N of the identity in P↑

+ , 
 is cyclic for at most one of the algebras
⋂

λ∈N αλ(R) and⋂
λ∈N αλ(RQ). Moreover, we comment on the significance of the spectral constraint

made in the hypothesis of the lemma.
We begin by noting that it suffices to establish the assertion for arbitrarily small

neighborhoods N of the identity in P↑
+ ; for it then holds for all bigger neighborhoods as

well. In particular, one may assume that λ0 Nλ−1
0 = N , where λ0 ∈ P↑

+ is a rotation by
π which maps W onto W ′. Assume now that 
 is cyclic for S .= ⋂

λ∈N αλ(R) ⊂ R
and let A ∈ S

⋂
C∞. Then for any λ ∈ N one has αλ−1(A) ∈ R∞, so the warped oper-

ators αλ−1(A)Q are well–defined and αλ(αλ−1(A)Q) ∈ αλ(RQ). By Proposition 2.9
αλ(αλ−1(A)Q) = A�Q�T , where � is the image of λ under the canonical homomor-

phism mapping P↑
+ onto L↑

+. Hence A�Q�T ∈ αλ(RQ), λ ∈ N .
Assume now, for a reductio ad absurdum, that 
 is also cyclic for

⋂
λ∈N αλ(RQ).

Then, since

(
∨

λ∈N
αλ(RQ)

)′
=

⋂

λ∈N
αλ(RQ

′) ⊃
⋂

λ∈N
αλ(αλ0(RQ)) = αλ0

⎛

⎝
⋂

λ∈N0

αλ(RQ)

⎞

⎠ ,

where the inclusion obtains because (RQ, U,
) is a causal Borchers triple, one con-
cludes that 
 is separating for

∨
λ∈N αλ(RQ). But Eq. (2.7) entails A�Q�T 
 = AQ
,

and consequently A�Q�T = AQ , λ ∈ N . Proposition 2.11 then yields A�Q�T −Q =
A = AQ−�Q�T , λ ∈ N . By explicit computation one finds that the sums of matrices
of the form �Q�T − Q, λ ∈ N , include all multiples of Q. Hence Am Q = A, m ∈ Z,
by another application of Proposition 2.11. The same is true for the smooth operators
A′ ∈ T .= αλ0(S) ⊂ αλ0(R) ⊂ R′, as one sees by applying again Proposition 2.9.

Pick now an arbitrary compact subset � in the interior of the forward lightcone V+,
so Q � is a compact subset in the interior of W . Hence for any given x, y ∈ R

n and
sufficiently large m ∈ N, the wedges W + x + m Qu and W ′ + y − m Qv lie spacelike to
each other for all u ∈ � and v ∈ V+. As explained in Sect. 4, one therefore has for any
A ∈ R, A′ ∈ R′, the equality [αx+m Qu(A), αy−m Qv(A′)] = 0. Now let A ∈ S

⋂
C∞,

A′ ∈ T
⋂

C∞, let � be any vector with spectral support with respect to U � R
n con-

tained in �, and let � be any other vector with compact spectral support. According to
the preceding step and Proposition 2.9 one has αx (A) = αx (Am Q) = (αx (A))m Q and
similarly αy(A′) = (αy(A′))−m Q . So one obtains by the same line of arguments as in
the proof of Proposition 2.10,

〈�, αx (A) αy(A′)�〉 = lim
m→∞〈�, (αx (A))m Q (αy(A′))−m Q �〉

= lim
m→∞〈�, (αy(A′))−m Q (αx (A))m Q �〉

= 〈�, αy(A′) αx (A)�〉 ,
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where in the second equality the support properties of � and the above commutation
properties of A, A′ have been used. Thus, varying �,� within the above limitations,
one arrives at

E(�) [αx (A), αy(A′)] = 0 for x, y ∈ R
n ,

where E( · ) denotes the spectral resolution of U � R
n .

This equality has been established for A ∈ S
⋂

C∞ and A′ ∈ T
⋂

C∞. But if N
is sufficiently small, the algebra S is mapped into itself by all translations in the open
convex cone

⋂
λ∈N �W; appealing to the discussion following relation (3.1) allows one

to conclude that S
⋂

C∞ is weakly dense in S and, similarly, T
⋂

C∞ is weakly dense
in T . So the equality holds for all A ∈ S and A′ ∈ T . Moreover, for any u, v ∈ R

n

there is a w ∈ R
n such that αw(T ) ⊃ αu(T )

∨
αv(T ). (This follows from the the

Poincaré covariance discussed in Sect. 4 and the geometry of wedge regions). Hence
E(�) [A, T ] = 0 for A ∈ S and T ∈ ∨

y∈Rn αy(T ).
Since 
 is cyclic for S it is also cyclic for T = αλ0(S). The spectral condition

on U � R
n therefore implies that the elements of

⋂
y∈Rn αy(T )′ are invariant under

translations. In particular U (x) ∈ ∨
y∈Rn αy(T ), x ∈ R

n , cf. [1, Theorem 4.6]. Thus
E(�) [A, U (x)] = 0, x ∈ R

n , and consequently E(�) A
 = 0, A ∈ S. It is then
clear that E(�) = 0 for any compact subset � in the interior of V+. So the spectrum of
U � R

n is confined to the boundary of the lightcone V+, i.e. there is no spectral point in
its interior, contradicting the hypothesis of the lemma. This completes the proof of the
lemma.

Finally, let us discuss the significance of the assumption that the spectrum of U � R
n

intersects the interior of V+. As a matter of fact, disregarding the trivial case sp U = {0},
this input is a consequence of the additivity of the energy–momentum spectrum, which
can be established in the present setting if 
 is (apart from a phase) the only unit vector in
the underlying Hilbert space which is invariant under translations [20, Chap. II.5.4]. The
possibility that sp U consists of the boundary of V+ (and thus is not additive) can only be
realized in theories where the Lorentz symmetry is spontaneously broken. With the help
of one–dimensional chiral fields which one assigns to lightrays, one can manufacture
such examples, and these are stable under the warping procedure. Since these examples
seem to be merely of academic interest, we do not present them here.
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