Skip to main content
Log in

Spaces of Type S as Topological Algebras under Twisted Convolution and Star Product

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The properties of the generalized Gelfand-Shilov spaces \(S_{{b_n}}^{{a_k}}\) are studied from the viewpoint of deformation quantization. We specify the conditions on the defining sequences (ak) and (bn) under which \(S_{{b_n}}^{{a_k}}\) is an algebra with respect to the twisted convolution and, as a consequence, its Fourier transformed space \(S_{{a_k}}^{{b_n}}\) is an algebra with respect to the Moyal star product. We also consider a general family of translation-invariant star products. We define and characterize the corresponding algebras of multipliers and prove the basic inclusion relations between these algebras and the duals of the spaces of ordinary pointwise and convolution multipliers. Analogous relations are proved for the projective counterpart of the Gelfand-Shilov spaces. A key role in our analysis is played by a theorem characterizing those spaces of type S for which the function exp(iQ(x)) is a pointwise multiplier for any real quadratic form Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Álvarez-Gaumé and M. A. Vázquez-Mozo, “General properties of non-commutative field theories,” Nucl. Phys. B 668(1–2), 293–321 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. A. Antonets, “The classical limit for Weyl quantization,” Lett. Math. Phys. 2(3), 241–245 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. G. Athanassoulis, N. J. Mauser, and T. Paul, “Coarse-scale representations and smoothed Wigner transforms,” J. Math. Pures Appl. 91(3), 296–338 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Beiser, H. Römer, and S. Waldmann, “Convergence of the Wick star product,” Commun. Math. Phys. 272(1), 25–52 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. F. A. Berezin and M. A. Shubin, The Schrödinger Equation (Mosk. Gos. Univ., Moscow, 1983; Kluwer, Dordrecht, 1991).

    MATH  Google Scholar 

  6. M. Blaszak and Z. Domański, “Phase space quantum mechanics,” Ann. Phys. 327(2), 167–211 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Brüning and S. Nagamachi, “Relativistic quantum field theory with a fundamental length,” J. Math. Phys. 45(6), 2199–2231 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Cappiello and J. Toft, “Pseudo-differential operators in a Gelfand-Shilov setting,” Math. Nachr. 290(5–6), 738–755 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Chaichian, M. N. Mnatsakanova, A. Tureanu, and Yu. Vernov, “Test functions space in noncommutative quantum field theory,” J. High Energy Phys. 2008(09), 125 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Doplicher, K. Fredenhagen, and J. E. Roberts, “The quantum structure of spacetime at the Planck scale and quantum fields,” Commun. Math. Phys. 172(1), 187–220 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Ya. Fainberg and M. A. Soloviev, “Causality, localizability, and holomorphically convex hulls,” Commun. Math. Phys. 57(2), 149–159 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. B. Folland, Harmonic Analysis in Phase Space (Princeton Univ. Press, Princeton, NJ, 1989), Ann. Math. Stud. 122.

    Book  MATH  Google Scholar 

  13. V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, and J. C. Várilly, “Moyal planes are spectral triples,” Commun. Math. Phys. 246(3), 569–623 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. M. Gelfand and G. E. Shilov, Spaces of Fundamental and Generalized Functions (Fizmatgiz, Moscow, 1958; Academic, New York, 1968), Generalized Functions 2.

    Google Scholar 

  15. M. de Gosson, Symplectic Geometry and Quantum Mechanics (Birkhüauser, Basel, 2006).

    Book  MATH  Google Scholar 

  16. J. M. Gracia-Bondía and J. C. Váarilly, “Algebras of distributions suitable for phase-space quantum mechanics. I,” J. Math. Phys. 29(4), 869–879 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires (Am. Math. Soc., Providence, RI, 1955), Mem. AMS, No. 16.

    MATH  Google Scholar 

  18. L. Hörmander, The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis (Springer, Berlin, 1983).

    MATH  Google Scholar 

  19. L. Hörmander, The Analysis of Linear Partial Differential Operators. III: Pseudo-differential Operators (Springer, Berlin, 1985).

    MATH  Google Scholar 

  20. H. Komatsu, “Projective and injective limits of weakly compact sequences of locally convex spaces,” J. Math Soc. Japan 19(3), 366–383 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Komatsu, “Ultradistributions. I: Structure theorems and a characterization,” J. Fac. Sci., Univ. Tokyo, Sect. IA 20(1), 25–105 (1973).

    MathSciNet  MATH  Google Scholar 

  22. G. Köthe, Topological Vector Spaces. II (Springer, New York, 1979).

    Book  MATH  Google Scholar 

  23. J. M. Maillard, “On the twisted convolution product and the Weyl transformation of tempered distributions,” J. Geom. Phys. 3(2), 231–261 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Mandelbrojt, “Sur un problème de Gelfand et Šilov,” Ann. Sci. Éc. Norm. Supér., Sér. 3, 77(2), 145–166 (1960).

    MATH  Google Scholar 

  25. R. Meise and D. Vogt, Introduction to Functional Analysis (Clarendon, Oxford, 1997).

    MATH  Google Scholar 

  26. B. S. Mitjagin, “Nuclearity and other properties of spaces of type S,” Am. Math. Soc. Transl., Ser. 2, 93, 45–59 (1970) [transl. from Tr. Mosk. Mat. Obshch. 9, 317–328 (1960)].

    Google Scholar 

  27. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Camb. Philos. Soc. 45, 99–124 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  28. G. J. Murphy, C *-Algebras and Operator Theory (Academic, Boston, 1990).

    MATH  Google Scholar 

  29. S. Nagamachi and N. Mugibayashi, “Hyperfunction quantum field theory,” Commun. Math. Phys. 46(2), 119–134 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Nagamachi and N. Mugibayashi, “Hyperfunction quantum field theory. II: Euclidean Green’s functions,” Commun. Math. Phys. 49(3), 257–275 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. von Neumann, “Die Eindeutigkeit der Schröodingerschen Operatoren,” Math. Ann. 104, 570–578 (1931).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. P. Palamodov, “Fourier transforms of infinitely differentiable functions of rapid growth,” Tr. Mosk. Mat. Obshch. 11, 309–350 (1962).

    MathSciNet  Google Scholar 

  33. S. Pilipović and B. Prangoski, “Anti-Wick and Weyl quantization on ultradistribution spaces,” J. Math. Pures Appl. 103(2), 472–503 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Prangoski, “Pseudodifferential operators of infinite order in spaces of tempered ultradistributions,” J. Pseudo-Diff. Oper. Appl. 4(4), 495–549 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  35. Quantum Mechanics in Phase Space: An Overview with Selected Papers, Ed. by C. K. Zachos, D. B. Fairlie, and T. L. Curtright (World Scientific, Hackensack, NJ, 2005).

    MATH  Google Scholar 

  36. H. H. Schaefer, Topological Vector Spaces (MacMillan, New York, 1966).

    MATH  Google Scholar 

  37. N. Seiberg and E. Witten, “String theory and noncommutative geometry,” J. High Energy Phys. 1999(09), 032 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  38. G. E. Shilov, “On a problem of quasianalyticity,” Dokl. Akad. Nauk SSSR 102(5), 893–895 (1955).

    MathSciNet  MATH  Google Scholar 

  39. M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Springer, Berlin, 1987), Springer Ser. Sov. Math.

    Book  MATH  Google Scholar 

  40. A. G. Smirnov, “On topological tensor products of functional Fréchet and DF spaces,” Integral Transforms Spec. Funct. 20(3–4), 309–318 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. A. Solov’ev, “On the Fourier-Laplace transformation of generalized functions,” Theor. Math. Phys. 15(1), 317–328 (1973) [transl. from Teor. Mat. Fiz. 15 (1), 3–19 (1973)].

    Article  MathSciNet  MATH  Google Scholar 

  42. M. A. Solov’ev, “Spacelike asymptotic behavior of vacuum expectation values in nonlocal field theory,” Theor. Math. Phys. 52(3), 854–862 (1982) [transl. from Teor. Mat. Fiz. 52 (3), 363–374 (1982)].

    Article  MathSciNet  Google Scholar 

  43. M. A. Soloviev, “An extension of distribution theory and of the Paley-Wiener-Schwartz theorem related to quantum gauge theory,” Commun. Math. Phys. 184(3), 579–596 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. A. Soloviev, “Axiomatic formulations of nonlocal and noncommutative field theories,” Theor. Math. Phys. 147(2), 660–669 (2006) [transl. from Teor. Mat. Fiz. 147 (2), 257–269 (2006)].

    Article  MathSciNet  MATH  Google Scholar 

  45. M. A. Soloviev, “Star product algebras of test functions,” Theor. Math. Phys. 153(1), 1351–1363 (2007) [transl. from Teor. Mat. Fiz. 153 (1), 3–17 (2007)].

    Article  MATH  Google Scholar 

  46. M. A. Soloviev, “Noncommutativity and θ-locality,” J. Phys. A: Math. Theor. 40(48), 14593–14604 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  47. M. A. Soloviev, “Quantum field theory with a fundamental length: A general mathematical framework,” J. Math. Phys. 50(12), 123519 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  48. M. A. Soloviev, “Reconstruction in quantum field theory with a fundamental length,” J. Math. Phys. 51(9), 093520 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  49. M. A. Soloviev, “Moyal multiplier algebras of the test function spaces of type S,” J. Math. Phys. 52(6), 063502 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  50. M. A. Soloviev, “Twisted convolution and Moyal star product of generalized functions,” Theor. Math. Phys. 172(1), 885–900 (2012) [transl. from Teor. Mat. Fiz. 172 (1), 9–27 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  51. M. A. Soloviev, “Generalized Weyl correspondence and Moyal multiplier algebras,” Theor. Math. Phys. 173(1), 1359–1376 (2012) [transl. from Teor. Mat. Fiz. 173 (1), 38–59 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  52. M. A. Soloviev, “Algebras with convergent star products and their representations in Hilbert spaces,” J. Math. Phys. 54(7), 073517 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  53. M. A. Soloviev, “Star products on symplectic vector spaces: Convergence, representations, and extensions,” Theor. Math. Phys. 181(3), 1612–1637 (2014) [transl. from Teor. Mat. Fiz. 181 (3), 568–596 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  54. M. A. Soloviev, “Integral representations of the star product corresponding to the s-ordering of the creation and annihilation operators,” Phys. Scr. 90(7), 074008 (2015).

    Article  Google Scholar 

  55. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (W. A. Benjamin, New York, 1964).

    MATH  Google Scholar 

  56. K. Takahashi, “Distribution functions in classical and quantum mechanics,” Prog. Theor. Phys., Suppl. 98, 109–156 (1989).

    Article  MathSciNet  Google Scholar 

  57. J. Toft, “Images of function and distribution spaces under the Bargmann transform,” J. Pseudo-Diff. Oper. Appl. 8(1), 83–139 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  58. J. C. Váarilly and J. M. Gracia-Bondía, “Algebras of distributions suitable for phase-space quantum mechanics. II: Topologies on the Moyal algebra,” J. Math. Phys. 29(4), 880–887 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  59. V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables (Nauka, Moscow, 1964; M.I.T. Press, Cambridge, MA, 1966).

    Google Scholar 

  60. V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1976; Mir, Moscow, 1979).

    Google Scholar 

  61. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover Publ., New York, 1931).

    MATH  Google Scholar 

  62. M. W. Wong, Weyl Transforms (Springer, New York, 1998).

    MATH  Google Scholar 

  63. V. V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet-Schwartz and dual Fréechet-Schwartz spaces,” Russ. Math. Surv. 34(4), 105–143 (1979) [transl. from Usp. Mat. Nauk 34 (4), 97–131 (1979)].

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Soloviev.

Additional information

This article was submitted by the author simultaneously in Russian and English

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Vol. 306, pp. 235–257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, M.A. Spaces of Type S as Topological Algebras under Twisted Convolution and Star Product. Proc. Steklov Inst. Math. 306, 220–241 (2019). https://doi.org/10.1134/S0081543819050195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543819050195

Navigation