Carob as cocoa substitute: a review on composition, health benefits and food applications


Cocoa originates from the beans of the cocoa tree (Theobroma cacao L.). It is an important commodity and the main ingredient in chocolate manufacture. Its value and quality are related to complex flavors and to its distinct sensory properties. The increasing demand for cocoa and its rising price urges the research for cocoa substitutes. A potential substitute for cocoa is carob. Carob is the fruit of an evergreen tree (Ceratonia siliqua L.) cultivated in the Mediterranean area, well known for its valuable locust bean gum and also for carob powder and syrup that are obtained from carob pulp. Cocoa beans and carob pods contain various phytochemicals including polyphenols, proteins and amino acids, fatty acids, carbohydrates and fiber. Phytochemicals represent an important source of nutrients and compounds that are beneficial to human health. In this review, phytochemicals in cocoa beans and carob pods and their impact on human health are reviewed. The bioactive compounds that are present in carob, in conjunction with the cocoa-like flavors and unique sensory properties that are enhanced by carob powder roasting, underline carob’s potential to substitute cocoa in various food products. These food applications are discussed in this review.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products—an overview. Compr Rev Food Sci Food Saf 15(1):73–91.

    Article  CAS  Google Scholar 

  2. 2.

    Araujo QRD, Gattward JN, Almoosawi S, Parada Costa Silva MDGC, Dantas PADS, Araujo Júnior QRD (2016) Cocoa and human health: from head to foot—a review. Crit Rev Food Sci Nutr 56(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Kongor JE, Hinneh M, de Walle DV, Afoakwa EO, Boeckx P, Dewettinck K (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—a review. Food Res Int 82:44–52.

    Article  CAS  Google Scholar 

  4. 4.

    Nair KPP (2010) 5-Cocoa (Theobroma cacao L.). The agronomy and economy of important tree crops of the developing world. Elsevier, London, pp 131–180

    Google Scholar 

  5. 5.

    Fowler MS (2009) Cocoa beans: from tree to factory. Industrial chocolate manufacture and use. Wiley-Blackwell, New York, pp 10–47

    Google Scholar 

  6. 6.

    Chapter 2 Chocolate Ingredients (2008) In: The Science of Chocolate (2). The Royal Society of Chemistry, pp 11–38

  7. 7.

    Afoakwa EO (2010) Cocoa cultivation, bean composition and chocolate flavour precursor formation and character. Chocolate science and technology. Wiley, New York, pp 12–34

    Google Scholar 

  8. 8.

    Bertazzo A, Comai S, Mangiarini F, Chen S (2013) Composition of Cacao Beans. In: Watson RR, Preedy VR, Zibadi S (eds) Chocolate in health and nutrition. Humana Press, Totowa, pp 105–117

    Google Scholar 

  9. 9.

    Steinberg FM, Bearden MM, Keen CL Cocoa and chocolate flavonoids: Implications for cardiovascular health. J Acad Nutr Diet 103(2):215–223.

  10. 10.

    Afoakwa EO, Paterson A, Fowler M, Ryan A (2008) Flavor formation and character in cocoa and chocolate: a critical review. Crit Rev Food Sci Nutr 48(9):840–857.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Lima LJR, Almeida MH, Nout MJR, Zwietering MH (2011) Theobroma cacao L., “The Food of the Gods”: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit Rev Food Sci Nutr 51(8):731–761.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Colombo ML, Pinorini-Godly MT, Conti A (2012) Botany and pharmacognosy of the cacao tree. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and Health. Springer, Milan, pp 41–62

    Google Scholar 

  13. 13.

    Coffee, Tea, Cocoa (2009) In: Food chemistry. Springer, Berlin, Heidelberg, pp 938–970

    Google Scholar 

  14. 14.

    World Cocoa Foundation.

  15. 15.

    The International Cocoa Organization (2000–2016).

  16. 16.

    Medeiros ML, Lannes SCdS (2009) Avaliação química de substitutos de cacau e estudo sensorial de achocolatados formulados. Food Sci Technol (Campinas) 29:247–253

    Article  Google Scholar 

  17. 17.

    Medeiros ML, Lannes SCdS (2010) Propriedades físicas de substitutos do cacau. Food Sci Technol (Campinas) 30:243–253

    Article  Google Scholar 

  18. 18.

    Tous J, Romero A, Batlle I (2013) The carob tree: botany, horticulture, and genetic resources. Horticultural reviews, vol 41. Wiley, New York, pp 385–456

    Google Scholar 

  19. 19.

    Gubbuk H, Kafkas E, Guven D, Gunes E (2010) Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Span J Agric Res 8(4):1129–1136

    Article  Google Scholar 

  20. 20.

    Cavdarova M, Makris DP (2014) Extraction kinetics of phenolics from carob (Ceratonia siliqua L.) kibbles using environmentally benign solvents. Waste Biomass Valorization 5(5):773–779.

    Article  CAS  Google Scholar 

  21. 21.

    Tucker SC (1992) The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am J Bot 79(3):318–327.

    Article  Google Scholar 

  22. 22.

    Hillcoat D, Lewis G, Verdcourt B (1980) A New Species of Ceratonia (Leguminosae-Caesalpinioideae) from Arabia and the Somali Republic. Kew Bull 35(2):261–271.

    Article  Google Scholar 

  23. 23.

    Khatib S, Vaya J (2010) Chap. 17—Fig, Carob, Pistachio, and Health A2—Watson, Ronald Ross. In: Preedy VR (ed) Bioactive foods in promoting health. Academic Press, San Diego, pp 245–263

    Google Scholar 

  24. 24.

    Dakia PA (2011) Chap. 35—Carob (Ceratonia siliqua L.) seeds, endosperm and germ composition, and application to health A2—Preedy, Victor R. In: Watson RR, Patel VB (eds) Nuts and seeds in health and disease prevention. Academic Press, San Diego, pp 293–299

    Google Scholar 

  25. 25.

    Attokaran M (2011) Carob Pod. Natural food flavors and colorants. Wiley-Blackwell, New York, pp 117–119

    Google Scholar 

  26. 26.

    Barak S, Mudgil D (2014) Locust bean gum: Processing, properties and food applications—a review. Int J Biol Macromol 66:74–80.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Davies WNL (1970) The Carob Tree and Its importance in the agricultural economy of cyprus. Econ Bot 24(4):460–470

    Article  Google Scholar 

  28. 28.

    Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ (2013) Locust bean gum: a versatile biopolymer. Carbohyd Polym 94(2):814–821.

    Article  CAS  Google Scholar 

  29. 29.

    Nasar-Abbas SM, e-Huma Z, Vu T-H, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf 15(1):63–72.

    Article  CAS  Google Scholar 

  30. 30.

    Goulas V, Stylos E, Chatziathanasiadou M, Mavromoustakos T, Tzakos A (2016) Functional components of carob fruit: linking the chemical and biological space. Int J Mol Sci 17(11):1875

    Article  CAS  PubMed Central  Google Scholar 

  31. 31.

    Benchikh Y, Louaileche H, George B, Merlin A (2014) Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Ind Crops Prod 60:298–303.

    Article  CAS  Google Scholar 

  32. 32.

    Ortega N, Macià A, Romero M-P, Trullols E, Morello J-R, Anglès N, Motilva M-J (2009) Rapid determination of phenolic compounds and alkaloids of carob flour by improved liquid chromatography tandem mass spectrometry. J Agric Food Chem 57(16):7239–7244.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Custódio L, Fernandes E, Escapa AL, Fajardo A, Aligué R, Alberício F, Neng NR, Nogueira JMF, Romano A (2011) Antioxidant and cytotoxic activities of carob tree fruit pulps are strongly influenced by gender and cultivar. J Agric Food Chem 59(13):7005–7012.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Food and Agricultural Organization of the United Nations (FAO) (2014).

  35. 35.

    Barracosa P, Osório J, Cravador A (2007) Evaluation of fruit and seed diversity and characterization of carob (Ceratonia siliqua L.) cultivars in Algarve region. Sci Hortic 114(4):250–257.

    Article  Google Scholar 

  36. 36.

    Cocoa bean processing (2000) In: Beckett ST (ed) The Science of Chocolate. The Royal Society of Chemistry, London, pp 31–48

    Google Scholar 

  37. 37.

    Bernaert H, Blondeel I, Allegaert L, Lohmueller T (2012) Industrial Treatment of Cocoa in Chocolate Production: Health Implications. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and Health. Springer, Milan, pp 17–31

    Google Scholar 

  38. 38.

    Afoakwa EO (2000) Chocolate and cocoa, flavor and quality. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York.

  39. 39.

    Afoakwa EO (2010) Industrial chocolate manufacture–processes and factors influencing quality. Chocolate Science and Technology. Wiley, New York, pp 35–57

    Google Scholar 

  40. 40.

    Oracz J, Nebesny E (2016) Antioxidant properties of cocoa beans (Theobroma cacao L.): influence of cultivar and roasting conditions. Int J Food Prop 19(6):1242–1258.

    Article  CAS  Google Scholar 

  41. 41.

    Tamanna N, Mahmood N (2015) Food processing and maillard reaction products: effect on human health and nutrition. Int J Food Sci.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Owusu M, Petersen MA, Heimdal H (2012) Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. J Food Process Preserv 36(5):446–456.

    Article  CAS  Google Scholar 

  43. 43.

    Giacometti J, Jolić SM, Josić D (2015) Chap. 73—cocoa processing and impact on composition A2—Preedy, Victor. Processing and impact on active components in food. Academic Press, San Diego, pp 605–612

    Google Scholar 

  44. 44.

    Dand R (2011) 9-Cocoa bean processing and the manufacture of chocolate. The International Cocoa Trade (Third edition). Woodhead Publishing, Cambridge, pp 268–289

  45. 45.

    Afoakwa EO (2010) The chemistry of flavour development during cocoa processing and chocolate manufacture. Chocolate Science and Technology. Wiley, New York, pp 58–72

    Google Scholar 

  46. 46.

    Musa Özcan M, Arslan D, Gökçalik H (2007) Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr 58(8):652–658.

    Article  CAS  Google Scholar 

  47. 47.

    Yousif AK, Alghzawi HM (2000) Processing and characterization of carob powder. Food Chem 69(3):283–287.

    Article  CAS  Google Scholar 

  48. 48.

    Şahin H, Topuz A, Pischetsrieder M, Özdemir F (2009) Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol 230(1):155.

    Article  CAS  Google Scholar 

  49. 49.

    Vitali Čepo D, Mornar A, Nigović B, Kremer D, Radanović D, Vedrina Dragojević I (2014) Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT Food Sci Technol 58(2):578–586.

    Article  CAS  Google Scholar 

  50. 50.

    Srour N, Daroub H, Toufeili I, Olabi A (2016) Developing a carob-based milk beverage using different varieties of carob pods and two roasting treatments and assessing their effect on quality characteristics. J Sci Food Agric 96(9):3047–3057.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Cantalejo MJ (1997) Effects of roasting temperature on the aroma components of carob (Ceratonia siliqua L.). J Agric Food Chem 45(4):1345–1350.

    Article  CAS  Google Scholar 

  52. 52.

    Fadel HHM, Abdel Mageed MA, Abdel Samad AKME., Lotfy SN (2006) Cocoa substitute: evaluation of sensory qualities and flavour stability. Eur Food Res Technol 223(1):125–131.

    Article  CAS  Google Scholar 

  53. 53.

    Arrighi WJ, Hartman TG, Ho CT (1997) Carob bean aroma dependence on roasting conditions. Perfum Flavor 22(1):31–41

    CAS  Google Scholar 

  54. 54.

    Spinella F, Rosanò L, Di Castro V, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A (2006) Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol Cancer Ther 5(6):1483

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Paul B, Hayes CS, Kim A, Athar M, Gilmour SK (2005) Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (–)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice. Carcinogenesis 26(1):119–124.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Chuang S-E, Cheng A-L, Lin J-K, Kuo M-L (2000) Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol 38(11):991–995.

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Dolara P, Luceri C, Filippo CD, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res/Fundam Mol Mech Mutagen 591(1–2):237–246.

    Article  CAS  Google Scholar 

  58. 58.

    Chen Y, Tseng S-H, Lai H-S, Chen W-J (2004) Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136(1):57–66.

    Article  PubMed  Google Scholar 

  59. 59.

    Harper CE, Patel BB, Wang J, Eltoum IA, Lamartiniere CA (2007) Epigallocatechin-3-Gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate 67(14):1576–1589.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs DR (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85(3):895–909

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53(3):322–331.

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Kuriyama S, Shimazu T, Ohmori K et al (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in japan: The ohsaki study. JAMA 296(10):1255–1265.

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Akhlaghi M, Bandy B (2012) Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid Med Cell Longev 2012:9.

    Article  CAS  Google Scholar 

  64. 64.

    Brückner M, Westphal S, Domschke W, Kucharzik T, Lügering A (2012) Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohn’s Colitis 6(2):226–235.

    Article  Google Scholar 

  65. 65.

    Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GAN, Raftery D, Arrieta-Cruz I, Sharma V, Cooper B, Lobo J, Simon JE, Zhang C, Cheng A, Qian X, Ono K, Teplow DB, Pavlides C, Dixon RA, Pasinetti GM (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Huang T-C, Lu K-T, Wo Y-YP, Wu Y-J, Yang Y-L (2011) Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6(12):e29102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. 67.

    Matissek R (1997) Evaluation of xanthine derivatives in chocolate—nutritional and chemical aspects. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 205(3):175–184

    Article  CAS  Google Scholar 

  68. 68.

    Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333.

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Tomas-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerdá B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramón D, Espín JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935.

    Article  PubMed  CAS  Google Scholar 

  70. 70.

    Afoakwa EO (2016) World cocoa production, processing and chocolate consumption pattern. In: Chocolate science and technology. Wiley, Chichester, pp 17–48.

    Google Scholar 

  71. 71.

    Avallone R, Plessi M, Baraldi M, Monzani A (1997) Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J Food Compos Anal 10(2):166–172.

    Article  CAS  Google Scholar 

  72. 72.

    Shawakfeh KQ, Ereifej KI (2005) pod characteristics of two Ceratonia siliqua l. varieties from Jordan. Ital J Food Sci 17(2):187–194

    CAS  Google Scholar 

  73. 73.

    Sigge GO, lipumbu L, Britz TJ (2011) Proximate composition of carob cultivars growing in South Africa. S Afr J Plant Soil 28(1):17–22.

    Article  CAS  Google Scholar 

  74. 74.

    Khlifa M, Kitane AB,S (2013) Determination of chemical composition of carob pod (Ceratonia siliqua. L.) and its morphological study. J Mater Environ Sci 4(3):348–353

    CAS  Google Scholar 

  75. 75.

    Huma Z-E, Jayasena V, Nasar-Abbas SM, Imran M, Khan MK Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J Food Process Preserv.

  76. 76.

    Lattanzio V, Kroon PA, Quideau S, Treutter D (2009) Plant phenolics—secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research. Wiley-Blackwell, Oxford, pp 1–35.

  77. 77.

    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33(6):423–447.

    Article  CAS  Google Scholar 

  79. 79.

    Afoakwa EO-A EO, Budu AS, Mensah-Brown H, Takrama JF (2015) Roasting effects on phenolic content and free-radical scavenging activities of pulp preconditioned and fermented cocoa (Theobroma cacao) beans. Afr J Food Agric Nutr Dev 15(1):9635–9649

    Google Scholar 

  80. 80.

    Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: a scientific approach beyond myths and claims. Pharmacol Res 61(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  81. 81.

    Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A (2005) Review: health effects of cocoa flavonoids. Food Sci Technol Int 11(3):159–176.

    Article  CAS  Google Scholar 

  82. 82.

    Lau-Cam CA (2013) The Absorption, Metabolism, and Pharmacokinetics of Chocolate Polyphenols. In: Watson RR, Preedy VR, Zibadi S (eds) Chocolate in Health and Nutrition. Humana Press, Totowa, pp 201–246

    Google Scholar 

  83. 83.

    And I, Recio I, Giner MC, Rios RM, (2012) Cocoa Polyphenols and Their Potential Benefits for Human Health. Oxidat Med Cell Longev 2012:23.

    Article  CAS  Google Scholar 

  84. 84.

    Ortega N, Romero M-P, Macià A, Reguant J, Anglès N, Morelló J-R, Motilva M-J (2008) Obtention and characterization of phenolic extracts from different cocoa sources. J Agric Food Chem 56(20):9621–9627.

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Jinap S, Jamilah B, Nazamid S (2004) Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Qual Prefer 15(5):403–409.

    Article  Google Scholar 

  86. 86.

    Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 52(12):3784–3791.

    Article  PubMed  CAS  Google Scholar 

  87. 87.

    Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-Gil MG, Martins AI, Sepúlveda C, Almeida J, Meireles M, Gírio FM, Rauter AP (2013) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Ind Crops Prod 47:132–138.

    Article  CAS  Google Scholar 

  88. 88.

    Rakib E, Chicha H, Abouricha S, Alaoui M, Bouli AA, Hansali M, Owen RW (2010) Determination of phenolic composition of carob pods grown in different regions of Morocco. J Nat Prod 3:134–140

    CAS  Google Scholar 

  89. 89.

    Custódio L, Escapa AL, Fernandes E, Fajardo A, Aligué R, Alberício F, Neng N, Nogueira JMF, Romano A (2011) Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum Nutr 66(1):78–84.

    Article  PubMed  CAS  Google Scholar 

  90. 90.

    Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73(7–8):674–684.

    Article  PubMed  CAS  Google Scholar 

  91. 91.

    Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B (2003) Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol 41(12):1727–1738.

    Article  PubMed  CAS  Google Scholar 

  92. 92.

    Monteiro J, Alves M, Oliveira P, Silva B (2016) Structure-bioactivity relationships of methylxanthines: trying to make sense of all the promises and the drawbacks. Molecules 21(8):974

    Article  CAS  Google Scholar 

  93. 93.

    Franco R, Oñatibia-Astibia A, Martínez-Pinilla E (2013) Health benefits of methylxanthines in cacao and chocolate. Nutrients 5(10):4159–4173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. 94.

    Jahanfar S, Jaafar SH (2015) Effects of restricted caffeine intake by mother on fetal, neonatal and pregnancy outcomes. Cochrane Database Syst Rev.

    Article  PubMed  Google Scholar 

  95. 95.

    Barr HM, Streissguth AP (1991) Caffeine use during pregnancy and child outcome: a 7-year prospective study. Neurotoxicol Teratol 13(4):441–448.

    Article  PubMed  CAS  Google Scholar 

  96. 96.

    Gans JH (1984) Comparative toxicities of dietary caffeine and theobromine in the rat. Food Chem Toxicol 22(5):365–369.

    Article  PubMed  CAS  Google Scholar 

  97. 97.

    Smit HJ (2011) Theobromine and the pharmacology of cocoa. In: Methylxanthines. Handbook of experimental pharmacology. Springer, Berlin, Heidelberg, pp 201–234.

    Google Scholar 

  98. 98.

    Glade MJ (2010) Caffeine—not just a stimulant. Nutrition 26(10):932–938.

    Article  PubMed  CAS  Google Scholar 

  99. 99.

    Stavric B (1988) Methylxanthines: Toxicity to humans. 2. Caffeine. Food Chem Toxicol 26(7):645–662.

    Article  PubMed  CAS  Google Scholar 

  100. 100.

    Ho VTT, Zhao J, Fleet G (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87.

    Article  PubMed  CAS  Google Scholar 

  101. 101.

    Biehl B, Ziegleder G (2003) COCOA | chemistry of processing. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 1436–1448.

    Google Scholar 

  102. 102.

    Serra Bonvehí J, Ventura Coll F (2000) Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. Eur Food Res Technol 210(3):189–195.

    Article  Google Scholar 

  103. 103.

    Craig WJ, Nguyen TT (1984) Caffeine and theobromine levels in cocoa and carob products. J Food Sci 49(1):302–303.

    Article  CAS  Google Scholar 

  104. 104.

    Salem ME, FAO (2012) Substituting of cacao by carob pod powder in milk chocolate manufacturing. Aust J Basic Appl Sci 6(3):572–578

    CAS  Google Scholar 

  105. 105.

    Voigt J, Biehl B, Wazir SKS (1993) The major seed proteins of Theobroma cacao L. Food Chem 47(2):145–151.

    Article  CAS  Google Scholar 

  106. 106.

    Abecia-Soria L, Pezoa-García NH, Amaya-Farfan J (2005) Soluble albumin and biological value of protein in cocoa (Theobroma cacao L.) beans as a function of roasting time. J Food Sci 70(4):S294-S298.

    Article  Google Scholar 

  107. 107.

    Voigt J, Biehl B, Heinrichs H, Kamaruddin S, Marsoner GG, Hugi A (1994) In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem 49(2):173–180.

    Article  Google Scholar 

  108. 108.

    Wang Y, Belton PS, Bridon H, Garanger E, Wellner N, Parker ML, Grant A, Feillet P, Noel TR (2001) Physicochemical studies of Caroubin: a gluten-like protein. J Agric Food Chem 49(7):3414–3419.

    Article  PubMed  CAS  Google Scholar 

  109. 109.

    Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2012) Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. J Cereal Sci 56(3):603–609.

    Article  CAS  Google Scholar 

  110. 110.

    Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2014) Effect of carob flour addition on the rheological properties of gluten-free breads. Food Bioprocess Technol 7(3):868–876.

    Article  CAS  Google Scholar 

  111. 111.

    Adeyeye EI, Akinyeye RO, Ogunlade I, Olaofe O, Boluwade JO (2010) Effect of farm and industrial processing on the amino acid profile of cocoa beans. Food Chem 118(2):357–363.

    Article  CAS  Google Scholar 

  112. 112.

    Ayaz FA, Torun H, Ayaz S, Correia PJ, Alaiz M, Sanz C, GrÚZ J, Strnad M (2007) Determination of chemical composition of anatolian carob pod (Ceratonia siliqua l.): sugars, amino and organic acids, minerals and phenolic compounds. J Food Qual 30(6):1040–1055.

    Article  CAS  Google Scholar 

  113. 113.

    Reineccius GA, Andersen DA, Kavanagh TE, Keeney PG (1972) Identification and quantification of the free sugars in cocoa beans. J Agric Food Chem 20(2):199–202.

    Article  CAS  Google Scholar 

  114. 114.

    Redgwell RJ, Trovato V, Curti D (2003) Cocoa bean carbohydrates: roasting-induced changes and polymer interactions. Food Chem 80(4):511–516.

    Article  CAS  Google Scholar 

  115. 115.

    Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem 100(4):1453–1455.

    Article  CAS  Google Scholar 

  116. 116.

    Ruiz-Aceituno L, Rodríguez-Sánchez S, Ruiz-Matute AI, Ramos L, Soria AC, Sanz ML (2013) Optimisation of a biotechnological procedure for selective fractionation of bioactive inositols in edible legume extracts. J Sci Food Agric 93(11):2797–2803.

    Article  PubMed  CAS  Google Scholar 

  117. 117.

    Cui SW, Nie S, Roberts KT (2011) 4.42—Functional properties of dietary fiber. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 517–525.

  118. 118.

    Cardador-Martínez A, Espino-Sevilla MT, del Campo STM, Alonzo-Macías M (2017) Dietary fiber as food additive: present and future. In: Hosseinian F, Oomah BD, Campos-Vega R (eds) Dietary fiber functionality in food and nutraceuticals. Wiley, New York, pp 77–94.

  119. 119.

    Gao Y, Yue J (2012) Dietary fiber and human health. In: Yu L, Tsao R, Shahidi F (eds) Cereals and pulses. Wiley-Blackwell, Oxford, pp 261–271.

  120. 120.

    Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM (1997) Dietary fibres: nutritional and technological interest. Trends Food Sci Technol 8(2):41–48.

    Article  CAS  Google Scholar 

  121. 121.

    Cui SW, Roberts KT (2009) CHAPTER 13—dietary fiber: fulfilling the promise of added-value formulations A2—Kasapis, Stefan. In: Norton IT, Ubbink JB (eds) Modern biopolymer science. Academic Press, San Diego, pp 399–448

    Google Scholar 

  122. 122.

    Slavin J (2013) 3—health aspects of dietary fibre A2—Delcour, Jan A. In: Poutanen K (ed) Fibre-rich and wholegrain foods. Woodhead Publishing, Sawston, pp 61–75

    Google Scholar 

  123. 123.

    Redgwell R, Trovato V, Merinat S, Curti D, Hediger S, Manez A (2003) Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chem 81(1):103–112.

    Article  CAS  Google Scholar 

  124. 124.

    Haber B (2002) Carob fiber benefits and applications. Cereal Foods World 47(8):365–369

    CAS  Google Scholar 

  125. 125.

    Saura-Calixto F (1988) Effect of condensed tannins in the analysis of dietary fiber in carob pods. J Food Sci 53(6):1769–1771.

    Article  CAS  Google Scholar 

  126. 126.

    Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31:241–312.

    Article  CAS  Google Scholar 

  127. 127.

    Andrea T, Borchers CLK, Sandra M, Hannum, Eric Gershwin M (2000) Cocoa and chocolate: composition, bioavailability, and health implications. J Med Food 3(2):77–105

    Article  Google Scholar 

  128. 128.

    Lehrian DW, Keeney PG, Butler DR (1980) Triglyceride characteristics of cocoa butter from cacao fruit matured in a microclimate of elevated temperature1. J Am Oil Chem Soc 57(2):66–69.

    Article  CAS  Google Scholar 

  129. 129.

    Lairon D (1997) Dietary fatty acids and arteriosclerosis. Biomed Pharmacother 51(8):333–336.

    Article  PubMed  CAS  Google Scholar 

  130. 130.

    Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60(6):986S-990S

    Article  PubMed  Google Scholar 

  131. 131.

    Gharibzahedi SMT, Jafari SM (2017) The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 62:119–132.

    Article  CAS  Google Scholar 

  132. 132.

    Campbell I (2017) Macronutrients, minerals, vitamins and energy. Anaesth Intensive Care Med 18(3):141–146.

    Article  Google Scholar 

  133. 133.

    Cole L, Kramer PR (2016) Chapter 5.2—Vitamins and minerals. In: Human physiology, biochemistry and basic medicine. Academic Press, Boston, pp 165–175.

    Google Scholar 

  134. 134.

    Singh G, Arora S, Sharma GS, Sindhu JS, Kansal VK, Sangwan RB (2007) Heat stability and calcium bioavailability of calcium-fortified milk. LWT Food Sci Technol 40(4):625–631.

    Article  CAS  Google Scholar 

  135. 135.

    Afoakwa EO, Quao J, Takrama J, Budu AS, Saalia FK (2013) Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. J Food Sci Technol 50(6):1097–1105.

    Article  PubMed  CAS  Google Scholar 

  136. 136.

    Torres-Moreno M, Torrescasana E, Salas-Salvadó J, Blanch C (2015) Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry 166 (Supplement C):125–132.

  137. 137.

    Chatterjee S (2016) Chapter two—oxidative stress, inflammation, and disease A2—Dziubla, Thomas. In: Butterfield DA (ed) Oxidative stress and biomaterials. Academic Press, New York, pp 35–58

    Google Scholar 

  138. 138.

    Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175.

    Article  PubMed  CAS  Google Scholar 

  139. 139.

    Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96

    PubMed  PubMed Central  CAS  Google Scholar 

  140. 140.

    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. 141.

    Milatovic D, Zaja-Milatovic S, Gupta RC (2016) In: Nutraceuticals Chap. 29—oxidative stress and excitotoxicity: antioxidants from nutraceuticals. Academic Press, Boston, pp 401–413

    Google Scholar 

  142. 142.

    Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306.

    Article  PubMed  CAS  Google Scholar 

  143. 143.

    Loffredo L, Violi F (2012) Polyphenolic antioxidants and health. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and health. Springer Milan, Milano, pp 77–85

    Google Scholar 

  144. 144.

    Makris DKP (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42(2):105–108

    CAS  Google Scholar 

  145. 145.

    Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50(2):373–377.

    Article  PubMed  CAS  Google Scholar 

  146. 146.

    Jalil A, Ismail A (2008) Polyphenols in cocoa and cocoa products: is there a link between antioxidant properties and health?. Molecules 13(9):2190

    Article  CAS  PubMed  Google Scholar 

  147. 147.

    Othman A, Ismail A, Abdul Ghani N, Adenan I (2007) Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100(4):1523–1530.

    Article  CAS  Google Scholar 

  148. 148.

    Martín MA, Ramos S (2016) Cocoa polyphenols in oxidative stress: potential health implications. J Funct Foods 27:570–588.

    Article  CAS  Google Scholar 

  149. 149.

    Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901

    Article  CAS  Google Scholar 

  150. 150.

    Sebai HSA, Chehimi L, Rtibi K, Amri M, El-Benna J, Sakly M (2013) In vitro and in vivo antioxidant properties of Tunisian carob (Ceratonia siliqua L.). J Med Plants Res 7(2):85–90

    CAS  Google Scholar 

  151. 151.

    <bib id="bib151">Zulim Botega D, Bastida S, Marmesat S, Pérez-Olleros L, Ruiz-Roso B, Sánchez-Muniz FJ (2009) Carob Fruit Polyphenols Reduce Tocopherol Loss, Triacylglycerol Polymerization and Oxidation in Heated Sunflower Oil. J Am Oil Chem Soc 86(5):419–425.</bib>

    Article  CAS  Google Scholar 

  152. 152.

    Bastida S, Sánchez-Muniz FJ, Olivero R, Pérez-Olleros L, Ruiz-Roso B, Jiménez-Colmenero F (2009) Antioxidant activity of Carob fruit extracts in cooked pork meat systems during chilled and frozen storage. Food Chem 116(3):748–754.

    Article  CAS  Google Scholar 

  153. 153.

    Sjögren B, Bigert C, Gustavsson P (2015) Chap. 16 - Cardiovascular Disease A2 - Nordberg, Gunnar F. In: Fowler BA, Nordberg M (eds) Handbook on the Toxicology of Metals (Fourth Edition). Academic Press, San Diego, pp 313–331

    Google Scholar 

  154. 154.

    Hoffman R, Gerber M, Hoffman R, Gerber M (2011) Cardiovascular Diseases. The Mediterranean Diet, John Wiley & Sons, Ltd., pp 258–292

  155. 155.

    Cole L, Kramer PR (2016) Chap. 6.4 - Cardiovascular Disease. Human Physiology, Biochemistry and Basic Medicine. Academic Press, Boston, pp 201–204

    Google Scholar 

  156. 156.

    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126.

    Article  PubMed  CAS  Google Scholar 

  157. 157.

    Hansson GK, Hamsten A (2012) 70 - Atherosclerosis, Thrombosis, and Vascular Biology A2—Goldman, Lee. In: Schafer AI (ed) Goldman’s Cecil Medicine (Twenty-Fourth Edition). W.B. Saunders, Philadelphia, pp 409–412

    Google Scholar 

  158. 158.

    Quiñones M, Miguel M, Aleixandre A (2013) Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 68(1):125–131.

    Article  PubMed  CAS  Google Scholar 

  159. 159.

    Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81(1):292S-297S

    Article  PubMed  Google Scholar 

  160. 160.

    Habauzit V, Morand C (2012) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chron Dis 3(2):87–106.

    Article  CAS  Google Scholar 

  161. 161.

    Osakabe N, Baba S, Yasuda A, Iwamoto T, Kamiyama M, Tokunaga T, Kondo K (2004) Dose-response study of daily cocoa intake on the oxidative susceptibility of low-density lipoprotein in healthy human volunteers. J Health Sci 50(6):679–684.

    Article  CAS  Google Scholar 

  162. 162.

    Baba S, Osakabe N, Kato Y, Natsume M, Yasuda A, Kido T, Fukuda K, Muto Y, Kondo K (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85(3):709–717

    Article  CAS  PubMed  Google Scholar 

  163. 163.

    Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S-i, Osakabe N, Tsubone H, Kondo K, Itakura H (2005) Suppressive Effect of Cocoa Powder on Atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic Rabbits. J Atheroscler Thromb 12(1):20–28.

    Article  PubMed  CAS  Google Scholar 

  164. 164.

    Allgrove J, Davison G (2014) Chap. 19 - Dark Chocolate/Cocoa Polyphenols and Oxidative Stress. Polyphenols in Human Health and Disease. Academic Press, San Diego, pp 241–251

    Google Scholar 

  165. 165.

    Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Gruenwald J (2001) Carob pulp preparation for treatment of hypercholesterolemia. Adv Ther 18(5):230–236.

    Article  PubMed  CAS  Google Scholar 

  166. 166.

    Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Koebnick C, Grünwald J (2003) Carob pulp preparation rich ininsoluble fibre lowers total and LDL cholesterol inhypercholesterolemic patients. Eur J Nutr 42(5):235–242.

    Article  PubMed  CAS  Google Scholar 

  167. 167.

    Ruiz-Roso B, Quintela JC, de la Fuente E, Haya J, Pérez-Olleros L (2010) Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Hum Nutr 65(1):50–56.

    Article  PubMed  CAS  Google Scholar 

  168. 168.

    Valero-Muñoz M, Martín-Fernández B, Ballesteros S, Lahera V, de las Heras N (2014) Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through Sirtuin-1 and Peroxisome proliferator-Activated Receptor-γ Coactivator-1α. J Nutr 144(9):1378–1384.

    Article  PubMed  CAS  Google Scholar 

  169. 169.

    Hassanein KMA, Youssef MKE, Ali HM, El-Manfaloty MM (2015) The influence of carob powder on lipid profile and histopathology of some organs in rats. Comp Clin Pathol 24(6):1509–1513.

    Article  CAS  Google Scholar 

  170. 170.

    Würsch P (1979) Influence of Tannin-rich carob pod fiber on the cholesterol metabolism in the rat. J Nutr 109(4):685–692

    Article  PubMed  Google Scholar 

  171. 171.

    Hoffman R, Gerber M, Hoffman R, Gerber M (2011) Cancers. The Mediterranean Diet. Wiley, New York, pp 293–342

    Google Scholar 

  172. 172.

    Moadel AB, Harris MS (2007) Cancer. Comprehensive Handbook of Clinical Health Psychology. Wiley, New York, pp 153–178

    Google Scholar 

  173. 173.

    Ramos S Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442.

  174. 174.

    Martin MA, Goya L, Ramos S (2013) Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 56:336–351.

    Article  PubMed  CAS  Google Scholar 

  175. 175.

    Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52(5):507–526.

    Article  CAS  PubMed  Google Scholar 

  176. 176.

    Manson MM (2003) Cancer prevention—the potential for diet to modulate molecular signalling. Trends Mol Med 9(1):11–18.

    Article  PubMed  CAS  Google Scholar 

  177. 177.

    Spadafranca A, Martinez Conesa C, Sirini S, Testolin G (2010) Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br J Nutr 103(7):1008–1014

    Article  CAS  PubMed  Google Scholar 

  178. 178.

    Lee KW, Kundu JK, Kim SO, Chun K-S, Lee HJ, Surh Y-J (2006) Cocoa Polyphenols Inhibit Phorbol Ester-Induced Superoxide Anion Formation in Cultured HL-60 Cells and Expression of Cyclooxygenase-2 and Activation of NF-κB and MAPKs in Mouse Skin In Vivo. J Nutr 136(5):1150–1155

    Article  CAS  PubMed  Google Scholar 

  179. 179.

    Kim J, Son J, Jung S, Kang N, Lee C, Lee K, Lee H (2010) Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. Br J Nutr 104(7):957–964

    Article  CAS  PubMed  Google Scholar 

  180. 180.

    Kang NJ, Lee KW, Lee DE, Rogozin EA, Bode AM, Lee HJ, Dong Z (2008) Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 283(30):20664–20673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. 181.

    Yamagishi M, Natsume M, Osakabe N, Nakamura H, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2002) Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague–Dawley rats. Cancer Lett 185(2):123–130.

    Article  PubMed  CAS  Google Scholar 

  182. 182.

    Yamagishi M, Natsume M, Osakabe N, Okazaki K, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2003) Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Lett 191(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  183. 183.

    Bisson J-F, Guardia-Llorens M-A, Hidalgo S, Rozan P, Messaoudi M (2008) Protective effect of Acticoa powder, a cocoa polyphenolic extract, on prostate carcinogenesis in Wistar–Unilever rats. Eur J Cancer Prev 17(1):54–61.

    Article  PubMed  Google Scholar 

  184. 184.

    Papież MA, Baran J, Bukowska-Straková K, Krośniak M (2011) Epicatechin administration leads to necrotic cell death of rat leukaemia promyelocytes in vivo. In Vivo 25(1):29–34

    PubMed  Google Scholar 

  185. 185.

    Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2009) A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food Chem Toxicol 47(10):2499–2506.

    Article  PubMed  CAS  Google Scholar 

  186. 186.

    Weyant MJ, Carothers AM, Dannenberg AJ, Bertagnolli MM (2001) (+)-Catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the min/+ mouse. Can Res 61(1):118

    CAS  Google Scholar 

  187. 187.

    Klenow S, Glei M (2009) New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 23(6):1055–1061.

    Article  PubMed  CAS  Google Scholar 

  188. 188.

    Klenow S, Jahns F, Pool-Zobel BL, Glei M (2009) Does an extract of carob (Ceratonia siliqua L.) have chemopreventive potential related to oxidative stress and drug metabolism in human colon cells? J Agric Food Chem 57(7):2999–3004.

    Article  PubMed  CAS  Google Scholar 

  189. 189.

    Klenow S, Glei M, Haber B, Owen R, Pool-Zobel BL (2008) Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem Toxicol 46(4):1389–1397.

    Article  PubMed  CAS  Google Scholar 

  190. 190.

    Haber BD (2003) Carob product based antiinflammatory or chemopreventative agent. Google Patents,

  191. 191.

    Rosa CST, Tessele K, Prestes RC, Silveira M, Franco F (2015) Effect of substituting of cocoa powder for carob flour in cakes made with soy and banana flours. Int Food Res J 22(5):2111–2118

    CAS  Google Scholar 

  192. 192.

    Iipumbu LSGO., Britz TJ (2008) Compositional analysis of locally cultivated carob (Ceratonia Siliqua) cultivars and development of nutritional food products for a range of market sectors. Stellenbosch University, Stellenbosch

    Google Scholar 

  193. 193.

    Moreira TC, Transfeld da Silva Á, Fagundes C, Ferreira SMR, Cândido LMB, Passos M, Krüger CCH (2017) Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT Food Sci Technol Part B 76:326–329.

    Article  CAS  Google Scholar 

Download references


This work was supported by the initiative “Carob: the Black Gold of Cyprus” of the University of Cyprus. The authors thank Prof. Antonis Kakas for critically reading the manuscript.

Author information



Corresponding author

Correspondence to Eftychia Pinakoulaki.

Ethics declarations

Conflict of interest

Andreas Loullis and Eftychia Pinakoulaki declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal studies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loullis, A., Pinakoulaki, E. Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur Food Res Technol 244, 959–977 (2018).

Download citation


  • Carob
  • Cocoa substitute
  • Phytochemicals
  • Health benefits