Skip to main content

The Taste Development of Cocoa Bean: Evidence from the Tropical Rain Forest to the Table

  • Chapter
  • First Online:
Trends in Sustainable Chocolate Production

Abstract

Cocoa research is an extensive study, and more understandings regarding cocoa and its derivative products’ taste have been reported in the last 20 years. The focus of taste development in cocoa starts from the plant cultivars, farming, post-harvesting, fermentation, drying, roasting, blending, alkalization, and conching. The processes transform mucilaginous cocoa beans rich in sugar, fat, alkaloids, polyphenols, and minerals into a popular taste of chocolate. This article aims to provide a comprehensive overview of the origins, post-harvest processing, quality control, and flavor development of cocoa beans. Major cocoa flavor markers are theobromine, caffeine, catechin, epicatechin, and proanthocyanidins. However, cocoa flavor notes are built upon intricate combinations of amino acids, alcohols, phenols, volatile acids, esters, aldehydes, ketones, lactones, terpenoids, minerals, glycated and polymeric substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca, M. L., Bragulat, M. R., Castella, G., & Cabanes, F. J. (1994). Ochratoxin A production by strains of Aspergillus niger var niger. Applied and Environmental Microbiology, 60, 2650–2652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamafio, N. A., Kolawole, O. M., & Oduro-Mensah, D. (2012). The theobromine-degrading potential of yeast strain isolated from tomato (Lycopersicon esculentum) fruit. International Journal of Biological Chemistry, 6(4), 103–112. https://doi.org/10.3923/ijbc.2012.103.112

    Article  CAS  Google Scholar 

  • Afoakwa, E. O., Peterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840–857.

    Article  CAS  PubMed  Google Scholar 

  • Alasti, M., Asefi, N., Maleki, R., & SeiiedlouHeris, S. S. (2019). Investigating the flavor compounds in the cocoa powder production process. Food Science & Nutrition, 7(12), 3892–3901.

    Article  CAS  Google Scholar 

  • Amir, E. J., Grandegger, K., Esper, A., Sumarsono, M., Djaya, C., & Muhlbauer, W. (1991). Development of multi-purpose solar tunnel dryer for use in humid tropics. Renewable Energy, 1(2), 167–176.

    Article  CAS  Google Scholar 

  • Anonymous. (2007). Cocoa merchantable quality. http://www.unctad.org/infocomm/anglais/cocoa/quality

  • Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor chemistry of cocoa and cocoa products—An overview. Comprehensive Reviews in Food Science and Food Safety, 15, 73–91.

    Article  CAS  PubMed  Google Scholar 

  • Ardhana, M. M. (1990). Microbial ecology and biochemistry of cocoa bean fermentations. Ph.D. thesis, Chemical Sciences and Engineering, The University of New South Wales, Sydney.

    Google Scholar 

  • Ardhana, M. M., & Fleet, G. H. (2003). The microbial ecology of cocoa bean fermentations in Indonesia. International Journal Food Microbiology, 86, 87–99.

    Article  CAS  Google Scholar 

  • Batista, N. N., de Andrade, D. P., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90, 313–319. https://doi.org/10.1016/j.foodres.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  • Beckett, S. T. (2000). Chocolate ingredients. In S. T. Beckett (Ed.), The science of chocolate. The Royal Society of Chemistry.

    Google Scholar 

  • Biehl, B., Passern, U., & Passern, D. (1977). Subcellular structures in fermenting cocoa bean: Effect of aeration and temperature during seed and fragment incubation. Journal of the Science of Food and Agriculture, 28, 41–52.

    Article  CAS  Google Scholar 

  • Biehl, B., & Ziegleder, G. (2003). Cocoa: Chemistry of processing. In B. Caballero, L. Trugo, & P. M. Finglas (Eds.), Encyclopedia of food sciences and nutrition (2nd ed., pp. 1436–1448). Academic.

    Chapter  Google Scholar 

  • Boca, C. d., & Nestle, S. A. (1962). Cocoa bean: Quality requirements and methods of assessment. In C. D. Pratt, E. D. Vadetsky, K. E. Langwill, K. E. McClosekey, & H. W. Schuemann (Eds.), Twenty years of confectionery and chocolate progress. AVI Publishing.

    Google Scholar 

  • Buamah, R., Dzogbefia, V. P., & Oldham, J. H. (1997). Pure yeast culture fermentation of cocoa (Theobroma cacao L): Effect on yield of sweatings and cocoa bean quality. World Journal Microbiology and Biotechnology, 13, 457–462.

    Article  CAS  Google Scholar 

  • Camu, N., Winter, T. D., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., Vacanneyt, M., & Vuyst, L. D. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa bean in Ghana. Applied and Environmental Microbiology, 73(6), 1809–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Alayo, E. M., Idrogo-Vásquez, G., Siche, R., & Cardenas-Toro, F. P. (2019). Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon, 5(1), e01157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatt, E. M. (1953). Fermentation and drying. Interscience Publishers.

    Google Scholar 

  • Chauw, M. (2007). Successional growth of yeast during cocoa bean fermentation. [Thesis, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney.]

    Google Scholar 

  • Codex-Alimentarius. (2001). Official standards list: Codex alimentarius. http://www.codexalimentarius.net/web/standard_list.jsp

  • Codex-Alimentarius. (2007). The 68th meeting of joint FAO-WHO expert committee on food additives: Summary and conclusions. http://www.who.int/entity/ipcs/food/jecfa/summaries/summary68.pdf

  • Da Veiga-Moreira, I. M., Miguel, M. G. D. C. P., Duarte, W. F., Dias, D. R., & Schwan, R. F. (2013). Microbial succession and the dynamics of metabolites and sugars during the fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Research International, 54(1), 9–17. https://doi.org/10.1016/j.foodres.2013.06.001

    Article  CAS  Google Scholar 

  • de Brito, E. S., Garcia, N. H. P., & Amancio, A. C. (2004). Use of a proteolytic enzyme in cocoa (Theobroma cacao L.) processing. Brazilian Archives of Biology and Technology, 47(4), 553–558.

    Article  Google Scholar 

  • de Brito, E. S., Garcia, N. H. P., Amancio, A. C., Valente, A. L. P., Pini, G. F., & Agusto, F. (2001). Effect of autoclaving cocoa nibs before roasting on the precursors of the Maillard reaction and pyrazines. International Journal Food Science and Technology, 36, 625–630.

    Article  Google Scholar 

  • De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: From ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5–17. https://doi.org/10.1111/jam.13045

    Article  PubMed  Google Scholar 

  • Deus, V. L., de Cerqueira E Silva, M. B., Maciel, L. F., Miranda, L. C. R., Hirooka, E. Y., Soares, S. E., de Souza Ferreira, E., & da Silva Bispo, E. (2018). Influence of drying methods on cocoa (Theobroma cacao L.): Antioxidant activity and presence of ochratoxin A. Food Science Technology, 38(Suppl. 1), 278–285.

    Article  Google Scholar 

  • Dimick, P. S., & Manning, D. M. (1987). Thermal and compositional properties of cocoa butter during static crystallization. JAOCS, 64(12), 1663–1669.

    Article  CAS  Google Scholar 

  • Drysdale, G. S., & Fleet, G. H. (1988). Acetic acid bacteria in winemaking: A review. American Journal of Enology and Viticulture, 39(2), 143–154.

    CAS  Google Scholar 

  • Dyer, B. (2003). Alkalized cocoa powders. Manufacturing Confectioner, 83(6), 46–54.

    Google Scholar 

  • Fang, Y., Li, R., Chu, Z., Zhu, K., Gu, F., & Zhang, Y. (2020). Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Science and Nutrition, 8(8), 4121–4133. https://doi.org/10.1002/fsn3.1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO, & WHO. (2001). FAO/WHO food standards programme: Codex Alimentarius Commission. ftp://ftp.fao.org/codex/ALINORM01/al0121me.pdf.

  • Farrera, L., Colas de la Noue, A., Strub, C., Guibert, B., Kouame, C., Grabulos, J., Montet, D., & Teyssier, C. (2021). Towards a starter culture for cocoa fermentation by the selection of acetic acid bacteria.

    Google Scholar 

  • Forsyth, W. G. C., & Quesnel, V. C. (1956). Cacao polyphenolic substances: The anthocyanin pigments. Biochemical Journal, 65, 177–179.

    Article  Google Scholar 

  • Forsyth, W. G. C., & Quesnel, V. C. (1963). Mechanisms of cocoa curing. Advances in Enzymology, 25, 457–492.

    Google Scholar 

  • Fowler, M. S. (2009). Cocoa beans: From tree to factory. In S. T. Beckett (Ed.), Industrial chocolate manufacture and use (pp. 137–152). Wiley.

    Google Scholar 

  • Franco, R., Oñatibia-Astibia, A., & MartĂ­nez-Pinilla, E. (2013). Health benefits of methylxanthines in cacao and chocolate. Nutrients, 5(10), 4159–4173. https://doi.org/10.3390/nu5104159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez, S. L., Loiseau, G., Paredes, J. L., Barel, M., & Guiraud, J.-P. (2007). Study on microflora and biochemistry of cocoa fermentation in the Dominican Republic. International Journal Food Microbiology, 114, 124–130.

    Article  CAS  Google Scholar 

  • Giacometti, J., Jolić, S. M., & Josić, D. (2015). Cocoa Processing and Impact on Composition. Processing and Impact on Active Components in Food, 605–612. https://doi.org/10.1016/b978-0-12-404699-3.00073-1

  • Gibberd, A. V. (1953). The improvement quality of Nigerian cocoa with reference to purple bean. In Report of the cocoa conference (pp. 26–29).

    Google Scholar 

  • Gutierrez, T. J. (2017). State-of-the-art chocolate manufacture: A review. Comprehensive Reviews in Food Science and Food Safety, 6(2017), 1313–1343.

    Article  Google Scholar 

  • Hammer, F. E. (1993). Oxidoreductases. In T. Nagodawithana & G. Reed (Eds.), Enzymes in food processing. Academic.

    Google Scholar 

  • Hammond, P. S. (1953). A discussion of some factors affecting the quality of cocoa produced by Gold Coast farmers. In Report of the cocoa conference (pp. 29–32).

    Google Scholar 

  • Hancock, B. L. (1988). Cocoa bean production and transport. In S. T. Beckett (Ed.), Industrial chocolate manufacture and use. AVI.

    Google Scholar 

  • Hansen, A. P., & Welty, R. E. (1970). Microflora of raw cocoa bean. Mycopathologia Mycologia Applicata, 44(4), 309–316.

    Article  Google Scholar 

  • Hansen, C. E., Olmo, M., & Burri, C. (1998). Enzyme activities in cocoa bean during fermentation. Journal of the Science of Food and Agriculture, 77, 273–281.

    Article  CAS  Google Scholar 

  • Hashim, P., Selamat, J., Muhammad, S. K. S., & Ali, A. (1998). Effect of mass and turning time on free amino acid, peptide-N, sugar, and pyrazine concentration during cocoa fermentation. Journal of the Science of Food and Agriculture, 78, 543–550.

    Article  Google Scholar 

  • Haslam, E. (1982). Proanthocyanidins. In J. B. Harbone & T. J. Mabry (Eds.), The flavonoids: Advances in research. Chapman & Hall.

    Google Scholar 

  • Hii, C. L., Law, C. L., Suzannah, S., Misnawi, C., & M. (2009). Polyphenols in cocoa (Theobroma cacao L.). Asian Jurnal of Food Agro-Industry., 2(04), 702–722.

    Google Scholar 

  • Hocking, A. D. (2006). Aspergillus and related teleomorphs. In C. W. Blackburn (Ed.), Food spoilage microorganisms (pp. 451–477). CRC Press, Woodhead.

    Chapter  Google Scholar 

  • ICCO. (2007). Annual report. The International Cocoa Organization.

    Google Scholar 

  • ICMSF. (2005). Microbial ecology of food commodities. Chapman & Hall.

    Google Scholar 

  • Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins, and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256–262. https://doi.org/10.1016/j.foodchem.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  • Jahurul, M. H. A., Zaidul, I. S. M., Norulaini, N. A. N., Sahena, F., Jinap, S., Azmir, J., Sharif, K. M., & Mohd Omar, A. K. (2013). Cocoa butter fats and possibilities of substitution in food products concerning cocoa varieties, alternative sources, extraction methods, composition, and characteristics. Journal of Food Engineering, 117(4), 467–476. https://doi.org/10.1016/j.jfoodeng.2012.09.024

    Article  CAS  Google Scholar 

  • Jespersen, L., Nielsen, D. S., Henholt, S., & Jakobsen, M. (2005). Occurrence and diversity of yeasts involved in fermentation of West African cocoa bean. FEMS Yeast Research, 5, 441–453.

    Article  CAS  PubMed  Google Scholar 

  • Jinap, S., Rosli, W. I. W., Russly, A. R., & Nordin, L. M. (1998). Effect of roasting time and temperature on volatile component profiles during nib roasting of cocoa bean (Theobroma cacao). Journal of the Science of Food and Agriculture, 77, 441–448.

    Article  CAS  Google Scholar 

  • Jolic, S. M., Redovnikovic, I. R., Markovic, K., Sipusic, D. I., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science and Technology, 46(9), 1793–1800.

    Article  CAS  Google Scholar 

  • Kadow, D., Bohlmann, J., Phillips, W., & Lieberei, R. (2013). Identification of main fine or flavour components in two genotypes of the cocoa tree (Theobroma cacao L.). Journal of Applied Botany and Food Quality, 86(1), 90–98. https://doi.org/10.5073/JABFQ.2013.086.013

    Article  CAS  Google Scholar 

  • Kothe, L., Zimmermann, B. F., & Galensa, R. (2013). Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chemistry, 141(4), 3656–3663.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, F. E., & Rasmussen, S. K. (1996). Expression of the stress-related intercellular barley peroxidase PRx8 in barley and transgenic tobacco. In C. Obinder, U. Burner, R. Eberman, C. Penel, & H. Greppin (Eds.), Plant preoxidases: Biochemistry and physiology (pp. 317–321). University of Geneva.

    Google Scholar 

  • Krysiak, W. (2006). Influence of Roasting conditions on coloration of roasted cocoa bean. Journal of Food Engineering, 77, 449–453.

    Article  CAS  Google Scholar 

  • Lee, A. H., Neilson, A. P., O’Keefe, S. F., Ogeje, J. A., Huang, H., Ponder, M., Chu, H. S. S., Jin, Q., Pilot, G., & Stewart, A. C. (2019). A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. European Food Research and Technology, 245, 511–519. https://doi.org/10.1007/s00217-018-3171-8

    Article  CAS  Google Scholar 

  • Levanon, Y., & Rossetini, S. M. O. (1965). A laboratory study of farm processing of cocoa bean for industrial use. Journal of Food Science, 30, 719–722.

    Article  CAS  Google Scholar 

  • Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17–23. https://doi.org/10.1016/j.jfca.2011.04.010

    Article  CAS  Google Scholar 

  • Lipp, M., Simonaeu, C., Ulberth, F., Anklam, E., Crews, C., Brereton, P., De Greyt, W., Schwack, W., & Wiedmaier, C. (2001). Composition of genuine cocoa butter and cocoa butter equivalents. Journal of Food Composition and Analysis, 14, 399–408.

    Article  CAS  Google Scholar 

  • Luna, F., Crouzillat, D., Cirou, L., & Bucheli, P. (2002). Chemical composition and flavour of Ecuadorian cocoa liquor. Journal of Agricultural and Food Chemistry, 50, 3527–3532.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, A. G. (1992). Solar drying technology for selected fruits and vegetables. Scientific Research Council.

    Google Scholar 

  • Matissek, R. (1997). Evaluation of xanthine derivatives in chocolate - nutritional and chemical aspects. European Food Research and Technology, 205(3), 175–184. https://doi.org/10.1007/s002170050148

    Article  CAS  Google Scholar 

  • McDoom, I. A., Ramsaroop, R., Saunders, R., & Kai, A. T. (1999). Optimization of solar crop drying. Renewable Energy, 16, 749–752.

    Article  Google Scholar 

  • McShea, A., Ramiro-Puig, E., Munro, S. B., Casadesus, G., Castell, M., & Smith, M. A. (2008). Clinical benefit and preservation of flavonols in dark chocolate manufacturing. Nutrition Reviews, 66(11), 630–641. https://doi.org/10.1111/j.1753-4887.2008.00114.x

    Article  PubMed  Google Scholar 

  • Mermet, G., Cros, E., & Georges, G. (1992). Etude preliminaire de l’optimisation des parametres de torrefaction du cacao. Consommation des precurseurs d’arome, development des pyrazines, qualite organoleptique. Cafe, Cacao, The, 36, 285–290.

    CAS  Google Scholar 

  • Minifie, B. W. (1980). Chocolate, cocoa and confectionery: Science and technology. AVI Publishing.

    Google Scholar 

  • Minifie, B. W. (1999). Chocolate, cocoa, and confectionery. AVI Publishing.

    Google Scholar 

  • Misnawi, J., Selamat, J. B., & Saari, N. (2002). Oxidation of polyphenol in unfermented and partly fermented cocoa bean by cocoa polyphenol oxidase and tyrosinase. Journal of the Science of Food and Agriculture, 82, 559–566.

    Article  CAS  Google Scholar 

  • Misnawi, J., Selamat, J. B., & Saari, N. (2004). Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Quality and Preference, 15(5), 403–409. https://doi.org/10.1016/S0950-3293(03)00097-1

    Article  Google Scholar 

  • Mounjouenpou, P., Gueule, D., Fontana-Tachon, A., Guyot, B., Tondje, P. R., & Guiraud, J. P. (2008). Filamentous fungi producing ochratoxin a during cocoa processing in Camerron. International Journal of Food Microbiology, 121(2), 234–241.

    Article  CAS  PubMed  Google Scholar 

  • Munira, & Arsyad, M. (2021). Post-harvest handling of cocoa commodities. IOP Conference Series: Earth and Environmental Science, 681, 012070.

    Article  Google Scholar 

  • Nair Prabhakaran, K. P. (2010). Cocoa (Theobroma cacao L.). In K. P. Nair Prabhakaran (Ed.), The agronomy and economy of important tree crops of the developing world (pp. 131–180). Elsevier.

    Chapter  Google Scholar 

  • Natsume, M., Osakabe, N., Yamagishi, M., Takizawa, T., Nakamura, T., & Miyatake, H. (2000). Analyses of polyphenols in caco liquor, cocoa and chocolate by Normal-Phase and Reversed-Phase HPLC. Bioscience, Biotechnology and Biochemistry, 64, 2581–2587.

    Article  CAS  Google Scholar 

  • Nazaruddin, R., Seng, L. K., Hassan, O., & Said, M. (2006). Effect of pulp preconditioning on the content of polyphenols in cocoa bean (Theobroma cacao) during fermentation. Industrial Crops and Products, 24, 87–94.

    Article  CAS  Google Scholar 

  • Nielsen, D. S., Teniola, O. D., Ban-Koffi, L., Owusu, M., Andersson, T. S., & Holzapfel, W. H. (2007). The microbiology of Ghanaian cocoa fermentations analyzed using culture-dependent and culture-independent methods. International Journal of Food Microbiology, 114(2), 168–186.

    Article  CAS  PubMed  Google Scholar 

  • Nigam, P. S., & Singh, A. (2014). Cocoa and Coffee Fermentations. In Encyclopedia of Food Microbiology (2nd ed., pp. 485–492). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00074-4

  • Niles, E. V. (1981). Microflora of imported cocoa bean. Journal of Stored Products Research, 17, 147–150.

    Article  Google Scholar 

  • Ogundero, V. (1983). Thermophilic fungi and fermenting cocoa bean in Nigeria. Mycopathologia, 82, 159–165.

    Article  CAS  Google Scholar 

  • Ostovar, K., & Keeney, P. G. (1973). Isolation and characterization of microorganisms involved in the fermentation of Trinidad’s cocoa bean. Journal of Food Science, 38, 611–617.

    Article  Google Scholar 

  • Othman, A., Ismail, A., Ghani, N. A., & Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa bean. Food Chemistry, 100, 1523–1530.

    Article  CAS  Google Scholar 

  • Passos, F. M. L., Silva, D. O., Lopez, A., Ferreira, C. L. L. F., & Guimares, W. V. (1984). Characterization and distribution of lactic acid bacteria from traditional cocoa bean fermentation in Bahia. Journal of Food Science, 49, 205–208.

    Article  Google Scholar 

  • Pettipher, G. I. (1986). Analysis of cocoa pulp and the formulation of a standardised artificial cocoa pulp medium. Journal of the Science of Food and Agriculture, 37, 297–309.

    Article  CAS  Google Scholar 

  • Rahmadi, A., Istiqomah, M., & Emmawati, A. (2019). Observation of bitterness reducing ability of melastomataceae leaf extracts on caffeine and coffee powder. Ekoloji, 28(108), 2705–2714.

    Google Scholar 

  • Rahmadi, A., Yunus, Y., Ulfah, M., Candra, K. P., & Suwasono, S. (2020). Microorganism population, theobromine, antioxidant, and FTIR analysis of Samarinda cocoa bean fermented with Saccharomyces cerevisiae and Acetobacter aceti. Food Research, 4, 1912–1920.

    Article  Google Scholar 

  • Ramli, N., Hassan, O., Said, M., Samsudin, W., & Idris, N. A. (2006). Influence of roasting conditions on volatile flavor of roasted Malaysian cocoa beans. Journal of Food Processing and Preservation, 30(3), 280–298. https://doi.org/10.1111/j.1745-4549.2006.00065.x

    Article  CAS  Google Scholar 

  • Reineccius, G. A., Andersen, D. A., Kavanagh, T. E., & Keeney, P. G. (1972). Identification and quantification of free sugars in cocoa bean. Journal of Agricultural and Food Chemistry, 20, 199–202.

    Article  CAS  Google Scholar 

  • Rodriguez-Campos, J., Escalona-BuendĂ­a, H. B., Contreras-Ramos, S. M., Orozco-Avila, I., Jaramillo-Flores, E., & Lugo-Cervantes, E. (2012). Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry, 132(1), 277–288. https://doi.org/10.1016/j.foodchem.2011.10.078

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Campos, J., Escalona-BuendĂ­a, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258. https://doi.org/10.1016/j.foodres.2010.10.028

    Article  CAS  Google Scholar 

  • Roelofsen, P. A. (1958). Fermentation, drying, and storage of cacao bean. Advances in Food Research, 8, 225–296.

    Article  CAS  Google Scholar 

  • Rohan, T. A. (1963). Processing of raw cocoa for the market. Food and Agriculture Organization of the United Nation.

    Google Scholar 

  • Saheeda, M., Sukhab, D., & Aveena, R. (2017). Comparison of the drying behavior of fermented cocoa (Theobroma cacao L.) beans dried in a cocoa house, greenhouse and mechanical oven. In Proceedings of the international symposium on cocoa research (ISCR) (pp. 13–17).

    Google Scholar 

  • Sakharov, I. Y., & Ardila, G. B. (1999). Variations of peroxidase activity in cocoa (Theobroma cacao L.) bean during their ripening, fermentation and drying. Food Chemistry, 65, 51–54.

    Article  CAS  Google Scholar 

  • Samah, O. A., Ibrahim, N., Alimon, H., & Abdul-Karim, M. I. (1993). Fermentation studies of stored cocoa bean. World Journal of Microbiology and Biotechnology, 9, 603–604.

    Article  PubMed  Google Scholar 

  • Sandhya, M. V. S., Yallappa, B. S., Varadaraj, M. C., Puranaik, J., Rao, L. J., Janardhan, P., & Murthy, P. S. (2016). Inoculum of the starter consortia and interactive metabolic process in enhancing quality of cocoa bean (Theobroma cocoa) fermentation. LWT-Food Science and Technology, 65, 731–738. https://doi.org/10.1016/j.lwt.2015.09.002

    Article  CAS  Google Scholar 

  • Schwan, R. F. (1998). Cocoa fermentations conducted with a define coctail inoculum. Applied and Environmental Microbiology, 64(4), 1477–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan, R. F., Vanetti, M. C. D., Silva, D. O., Lopez, A., & Moraes, C. A. (1986). Characterization and distribution of aerobic, spore-forming bacteria from cacao fermentation in Bahia. Journal of Food Science, 51, 1583–1584.

    Article  Google Scholar 

  • Schwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Review in Food Science and Nutrition, 44(4), 205–221.

    Article  CAS  Google Scholar 

  • Serra-Bonvehi, J., & Coll, F. (1997). Evaluation of bitterness and astringency of polyphenolic compounds in cocoa powder. Food Chemistry, 60(3), 365–370.

    Article  CAS  Google Scholar 

  • Sharp, A. K. (1979). Prevention of condensation damage to cocoa bean shipped in containers. Journal of Stored Products Research, 15, 101–109.

    Article  Google Scholar 

  • Tafuri, A., Ferracane, R., & Ritieni, A. (2004). Ochratoxin A in Italian marketed cocoa products. Food Chemistry, 88, 487–494.

    Article  CAS  Google Scholar 

  • Thompson, S. S., Miller, K. B., & Lopez, A. S. (2007). Cocoa and coffee. In M. P. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology: Fundamentals and frontiers. ASM Press.

    Google Scholar 

  • Torres-Moreno, M., Tarrega, A., Costell, E., & Blanch, C. (2012). Dark chocolate acceptability: Influence of cocoa origin and processing conditions. Journal of the Science of Food and Agriculture, 92, 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Tran-Dinh, N., Pitt, J. I., & Carter, D. A. (1999). Molecular genotype analysis of natural toxigenic and non-toxigenic isolates of Aspergillus flavus and A.parasiticus. Mycological Research, 103(11), 1485–1490.

    Article  CAS  Google Scholar 

  • UrbaĹ„ska, B., & Kowalska, J. (2019). Comparison of the total polyphenol content and antioxidant activity of chocolate obtained from roasted and unroasted cocoa beans from different regions of the world. Antioxidants, 8(8). https://doi.org/10.3390/antiox8080283

  • van der Wal, B., Kettenes, D. K., Stoffelsma, J., Sipma, G., & Semper, A. T. J. (1971). New volatile components of roasted cocoa. Journal of Agriculture and Food Chemistry, 19, 276–280.

    Article  Google Scholar 

  • Varga, J., Kevei, E., Rinyu, E., Teren, J., & Kozakiewicz, Z. (1996). Ochratoxin production by Aspergillus species. Applied and Environmental Microbiology, 62(12), 4461–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt, J., Heinrichs, H., Voigt, G., & Biehl, B. (1994). Cocoa-specific aroma precursors are generated by proteolytic digestion of the vicilin-like globulin of cocoa seeds. Food Chemistry, 50(2), 177–184. https://doi.org/10.1016/0308-8146(94)90117-1

    Article  CAS  Google Scholar 

  • Waterhouse, A. L., Sirley, J. R., & Donovan, J. L. (1996). Antioxidants in chocolate. Lancet, 348, 834.

    Article  CAS  PubMed  Google Scholar 

  • Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33, 423–447.

    Article  CAS  Google Scholar 

  • Wong, M. K., Dimick, P. S., & Hammerstedt, R. H. (1990). Extraction and high performance liquid chromatoghraphy enrichment of poplyphenol oxidase from Theobroma cacao seed. Journal of Food Science, 55, 1108–1111.

    Article  CAS  Google Scholar 

  • Ziegleder, G. (1990). Linalool contents as characteristic of some flavor grade cocoas. Zeitschrift fĂĽr Lebensmittel-Untersuchung und -Forschung, 191(4–5), 306–309. https://doi.org/10.1007/BF01202432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Rahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rohmah, M., Sari, K., Rahmadi, A. (2022). The Taste Development of Cocoa Bean: Evidence from the Tropical Rain Forest to the Table. In: Galanakis, C.M. (eds) Trends in Sustainable Chocolate Production. Springer, Cham. https://doi.org/10.1007/978-3-030-90169-1_2

Download citation

Publish with us

Policies and ethics