Skip to main content
Log in

Stoichiometric approach to quantitative analysis of biomolecules: the case of nucleic acids

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Majority of protocols for quantitative analysis of biomarkers (including nucleic acids) require calibrations and target standards. In this work, we developed a principle for quantitative analysis that eliminates the need for a standard of a target molecule. The approach is based on stoichiometric reporting. While stoichiometry is a simple and robust analytical platform, its utility toward the analysis of biomolecules is very limited due to the lack of general methodologies for detecting the equivalence point. In this work, we engineer a new target/probe-binding model that enables detecting the equivalence point while maintaining an appropriate level of specificity. We establish the probe design principles through theoretical simulations and experimental confirmation. Further, we demonstrate the utility of the stoichiometric analysis via a proof-of-concept system based on oligonucleotide hybridization. Overall, the approach that requires neither standard nor calibration yields quantitative results with an adequate accuracy (> 90–110%) and a high specificity. The principles established in our work are very general and can extend beyond oligonucleotide targets toward quantitative analysis of many other biomolecules such as antibodies and proteins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated and/or analyzed during this study are included in the article and supplementary information.

Code availability

Not applicable.

References

  1. [[1]Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA, Woodcock J, Zeger SL. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther 2001; 69: 89–95. https://doi.org/10.1067/mcp.2000.113989

  2. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2012;84:487–515. https://doi.org/10.1021/ac2030199.

    Article  CAS  PubMed  Google Scholar 

  3. Wang LX, Ji CJ. Advances in quantitative bioanalysis of oligonucleotide biomarkers and therapeutics. Bioanalysis. 2016;8:143–55. https://doi.org/10.4155/bio.15.234.

    Article  CAS  PubMed  Google Scholar 

  4. Khodakov D, Wang C, Zhang DY. Diagnostics based on nucleic acid sequence variant profiling: Pcr, hybridization, and ngs approaches. Adv Drug Delivery Rev. 2016;105:3–19. https://doi.org/10.1016/j.addr.2016.04.005.

    Article  CAS  Google Scholar 

  5. Kessler HH, Preininger S, Stelzl E, Daghofer E, Santner BI, Marth E, Lackner H, Stauber RE. Identification of different states of hepatitis b virus infection with a quantitative pcr assay. Clin Diagn Lab Immunol. 2000;7:298–300. https://doi.org/10.1128/cdli.7.2.298-300.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang S, Rothman RE. Pcr-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4:337–48. https://doi.org/10.1016/s1473-3099(04)01044-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawaguchi T, Komatsu S, Ichikawa D, Morimura R, Tsujiura M, Konishi H, Takeshita H, Nagata H, Arita T, Hirajima S, Shiozaki A, Ikoma H, Okamoto K, Ochiai T, Taniguchi H, Otsuji E. Clinical impact of circulating mir-221 in plasma of patients with pancreatic cancer. Br J Cancer. 2013;108:361–9. https://doi.org/10.1038/bjc.2012.546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rousseau F, Heitz D, Biancalana V, Blumenfeld S, Kretz C, Boué J, Tommerup N, Vanderhagen C, DeLozier-Blanchet C, Croquette MF, Gilgenkrantz S, Jalbert P, Voelckel MA, Oberlé I, Mandel JL. Direct diagnosis by DNA analysis of the fragile x-syndrome of mental-retardation. N Engl J Med. 1991;325:1673–81. https://doi.org/10.1056/nejm199112123252401.

    Article  CAS  PubMed  Google Scholar 

  9. Lemna WK, Feldman GL, Kerem BS, Fernbach SD, Zevkovich EP, O’Brien WE, Riordan JR, Collins FS, Tsui LC, Beaudet AL. Mutation analysis for heterozygote detection and the prenatal-diagnosis of cystic-fibrosis. N Engl J Med. 1990;322:291–6. https://doi.org/10.1056/nejm199002013220503.

    Article  CAS  PubMed  Google Scholar 

  10. Mohan R, Mach KE, Bercovici M, Pan Y, Dhulipala L, Wong PK, Liao JC. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis. PLoS ONE. 2011;6: e26846. https://doi.org/10.1371/journal.pone.0026846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hirajima S, Komatsu S, Ichikawa D, Takeshita H, Konishi H, Shiozaki A, Morimura R, Tsujiura M, Nagata H, Kawaguchi T, Arita T, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Clinical impact of circulating mir-18a in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2013;108:1822–9. https://doi.org/10.1038/bjc.2013.148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Durner J. Clinical chemistry: Challenges for analytical chemistry and the nanosciences from medicine. Angew. Chem., Int. Ed. 2010; 49: 1026–1051. https://doi.org/10.1002/anie.200903363

  13. Bellassai N, Spoto G. Biosensors for liquid biopsy: Circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem. 2016;408:7255–64. https://doi.org/10.1007/s00216-016-9806-3.

    Article  CAS  PubMed  Google Scholar 

  14. Kalman TZ, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring dissociation kinetics during electrophoretic focusing to enable high‐specificity nucleic acid detection. Angew. Chem., Int. Ed. 2018; 57: 3343–3348. doi:https://doi.org/10.1002/anie.201711673

  15. Schwarzenbach H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 2013;15:211. https://doi.org/10.1186/bcr3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsai CT, Robinson PV, Cortez FD, Elma MLB, Seftel D, Pourmandi N, Pandori MW, Bertozzi CR. Antibody detection by agglutination-pcr (adap) enables early diagnosis of hiv infection by oral fluid analysis. Proc Natl Acad Sci U S A. 2018;115:1250–5. https://doi.org/10.1073/pnas.1711004115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishii S, Segawa T, Okabe S. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative pcr. Appl Environ Microbiol. 2013;79:2891–8. https://doi.org/10.1128/aem.00205-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donhauser SC, Niessner R, Seidel M. Sensitive quantification of escherichia coli o157:H7, salmonella enterica, and campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem. 2011;83:3153–60. https://doi.org/10.1021/ac2002214.

    Article  CAS  PubMed  Google Scholar 

  19. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL. Waterborne pathogens: detection methods and challenges. Pathogens. 2015;4:307–34. https://doi.org/10.3390/pathogens4020307.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto Y. Pcr in diagnosis of infection: Detection of bacteria in cerebrospinal fluids. Clin Diagn Lab Immunol. 2002;9:508–14. https://doi.org/10.1128/cdli.9.3.508-514.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cankar K, Štebih D, Dreo T, Žel J, Gruden K. Critical points of DNA quantification by real-time pcr – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol. 2006;6:37. https://doi.org/10.1186/1472-6750-6-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong JH, Ueda H. Elisa-type assays of trace biomarkers using microfluidic methods. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017; 9: e1457. https://doi.org/10.1002/wnan.1457

  23. Moelans CB, de Weger RA, Van der Wall E, van Diest PJ. Current technologies for her2 testing in breast cancer. Crit Rev Oncol Hematol. 2011;80:380–92. https://doi.org/10.1016/j.critrevonc.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  24. Schuster J, Funke SA. Methods for the specific detection and quantitation of amyloid-beta oligomers in cerebrospinal fluid. J Alzheimers Dis. 2016;53:53–67. https://doi.org/10.3233/jad-151029.

    Article  CAS  PubMed  Google Scholar 

  25. Call DR. Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol. 2005;31:91–9. https://doi.org/10.1080/10408410590921736.

    Article  CAS  PubMed  Google Scholar 

  26. Gopinath SCB, Tang TH, Chen Y, Citartan M, Lakshmipriya T. Bacterial detection: from microscope to smartphone. Biosens Bioelectron. 2014;60:332–42. https://doi.org/10.1016/j.bios.2014.04.014.

    Article  CAS  PubMed  Google Scholar 

  27. Shen JW, Li YB, Gu HS, Xia F, Zuo XL. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev. 2014;114:7631–77. https://doi.org/10.1021/cr300248x.

    Article  CAS  PubMed  Google Scholar 

  28. Sharma S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors. 2015;5:577–601. https://doi.org/10.3390/bios5030577.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-care diagnostics: recent developments in a connected age. Anal Chem. 2017;89:102–23. https://doi.org/10.1021/acs.analchem.6b04630.

    Article  CAS  PubMed  Google Scholar 

  30. Page FG. The birth of titrimetry: William lewis and the analysis of america potaches. Bull Hist Chem. 2001;26:66–72.

    CAS  Google Scholar 

  31. Debnath M, Farace JM, Johnson KD, Nesterova IV. Quantitation without calibration: Response profile as an indicator of target amount. Anal Chem. 2018;90:7800–3. https://doi.org/10.1021/acs.analchem.8b02053.

    Article  CAS  PubMed  Google Scholar 

  32. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M. Quantitative and stoichiometric analysis of the microrna content of exosomes. Proc Natl Acad Sci U S A. 2014;111:14888–93. https://doi.org/10.1073/pnas.1408301111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ha SH, Ferrell JE. Thresholds and ultrasensitivity from negative cooperativity. Science. 2016;352:990–3. https://doi.org/10.1126/science.aad5937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dillen A, Vandezande W, Daems D, Lammertyn J. Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: a thermodynamic study. Anal Bioanal Chem. 2021;413:4739–50. https://doi.org/10.1007/s00216-021-03444-y.

    Article  CAS  PubMed  Google Scholar 

  35. Du Y, Dong S. Nucleic acid biosensors: recent advances and perspectives. Anal Chem. 2017;89:189–215. https://doi.org/10.1021/acs.analchem.6b04190.

    Article  CAS  PubMed  Google Scholar 

  36. Hunter CA, Anderson HL. What is cooperativity? Angew. Chem., Int. Ed. 2009; 48: 7488–7499. https://doi.org/10.1002/anie.200902490

  37. Ferrell JE. Q&a: Cooperativity. J Biol. 2009;8:53. https://doi.org/10.1186/jbiol157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alvarado D, Klein DE, Lemmon MA. Structural basis for negative cooperativity in growth factor binding to an egf receptor. Cell. 2010;142:568–79. https://doi.org/10.1016/j.cell.2010.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Srinivasan B, Forouhar F, Shukla A, Sampangi C, Kulkarni S, Abashidze M, Seetharaman J, Lew S, Mao L, Acton TB, Xiao R, Everett JK, Montelione GT, Tong L, Balaram H. Allosteric regulation and substrate activation in cytosolic nucleotidase ii from legionella pneumophila. Febs J. 2014;281:1613–28. https://doi.org/10.1111/febs.12727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ricci F, Vallée-Bélisle A, Porchetta A, Plaxco KW. Rational design of allosteric inhibitors and activators using the population-shift model: in vitro validation and application to an artificial biosensor. J Am Chem Soc. 2012;134:15177–80. https://doi.org/10.1021/ja304672h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. Allosterically tunable, DNA-based switches triggered by heavy metals. J Am Chem Soc. 2013;135:13238–41. https://doi.org/10.1021/ja404653q.

    Article  CAS  PubMed  Google Scholar 

  42. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA. Nupack: analysis and design of nucleic acid systems. J Comput Chem. 2011;32:170–3. https://doi.org/10.1002/jcc.21596.

    Article  CAS  PubMed  Google Scholar 

  43. Satterfield BC, West JAA, Caplan MR. Tentacle probes: eliminating false positives without sacrificing sensitivity. Nucleic Acids Res. 2007;35: e76. https://doi.org/10.1093/nar/gkm113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Satterfield BC, Bartosiewicz M, West JAA, Caplan MR. Surpassing specificity limits of nucleic acid probes via cooperativity. J Mol Diagn. 2010;12:359–67. https://doi.org/10.2353/jmoldx.2010.090056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Connelly RP, Verduzco C, Farnell S, Yishay T, Gerasimova YV. Toward a rational approach to design split g-quadruplex probes. ACS Chem Biol. 2019;14:2701–12. https://doi.org/10.1021/acschembio.9b00634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kikuchi N, Reed A, Gerasimova YV, Kolpashchikov DM. Split dapoxyl aptamer for sequence-selective analysis of nucleic acid sequence based amplification amplicons. Anal Chem. 2019;91:2667–71. https://doi.org/10.1021/acs.analchem.8b03964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. O’Flaherty K, Maguire J, Simpson JA, Fowkes FJI. Immunity as a predictor of anti-malarial treatment failure: a systematic review. Malar J. 2017;16:158. https://doi.org/10.1186/s12936-017-1815-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cutts JC, Powell R, Agius PA, Beeson JG, Simpson JA, Fowkes FJI. Immunological markers of Plasmodium vivax exposure and immunity: a systematic review and meta-analysis. BMC Med. 2014;12:150. https://doi.org/10.1186/s12916-014-0150-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fiorentini S, Marsico S, Becker PD, Iaria ML, Bruno R, Guzmán CA, Caruso A. Synthetic peptide at20 coupled to klh elicits antibodies against a conserved conformational epitope from a major functional area of the hiv-1 matrix protein p17. Vaccine. 2008;26:4758–65. https://doi.org/10.1016/j.vaccine.2008.06.082.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R15GM135796.

Funding

The reported studies were supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R15GM135796.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors participated in the methodology design, performed experiments, and analyzed and discussed the data. I.V. Nesterova produced an original idea of this work, designed the general experimental methodology, and supervised the project. All of the authors contributed to the discussion of this manuscript and its writing. All of the authors read and approved the manuscript.

Corresponding author

Correspondence to Irina V. Nesterova.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

Authors report no conflicts of interest/competing interests.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Source of biological material

Not applicable.

Statement on animal welfare

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegbenro, A., Coleman, S. & Nesterova, I.V. Stoichiometric approach to quantitative analysis of biomolecules: the case of nucleic acids. Anal Bioanal Chem 414, 1587–1594 (2022). https://doi.org/10.1007/s00216-021-03781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03781-y

Keywords

Navigation