Skip to main content
Log in

Multi-parameter surface plasmon resonance instrument for multiple nucleic acid quantitative detection

  • Research
  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Multiplex nucleic acid assays can simultaneously detect the characteristics of different target nucleic acids in complex mixtures and are used in disease diagnosis, environmental monitoring, and food safety. However, traditional nucleic acid amplification assays have limitations such as complicated operation, long detection time, unstable fluorescent labeling, and mutual interference of multiplex nucleic acids. We developed a real-time, rapid, and label-free surface plasmon resonance (SPR) instrument for multiplex nucleic acid detection. The multiparametric optical system based on total internal reflection solves the multiplex detection problem by cooperating with linear light source, prism, photodetector, and mechanical transmission system. An adaptive threshold consistency correction algorithm is proposed to solve the problem of inconsistent responsiveness of different detection channels and the inability of quantitative comparison. The instrument achieves label-free and amplification-free rapid detection of these biomarkers for miRNA-21 and miRNA-141, which are widely expressed in breast cancer and prostate cancer. The multiplex nucleic acid detection takes 30 min and the biosensor has good repeatability and specificity. The instrument has a limit of detection (LODs) of 50 nM for target oligonucleotides, and the smallest absolute amount of sample that can be detected is about 4 pmol. It provides a simple and efficient point-of-care testing (POCT) detection platform for small molecules such as DNA and miRNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data presented in this study can be available by contacting the corresponding author, Prof. Dr. Lulu Zhang (llzhang@mail.buct.edu.cn).

References

  • J. Ashley, M. Piekarska, C. Segers, L. Trinh, T. Rodgers, R. Willey, I.E. Tothill, Biosens. Bioelectron. 88, 109 (2017)

    Article  Google Scholar 

  • M. Agahi, M. Rahaie, A novel DNA tweezers-based nanobiosensor for multiple detections of circulating exosomal microRNAs in breast cancer. Anal. Biochem. 651, 114697 (2022)

    Article  Google Scholar 

  • T.M. Chinowsky, J.G. Quinn, D.U. Bartholomew, R. Kaiser, J.L. Elkind, Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sens. Actuators B Chem. 91, 266 (2003)

    Article  Google Scholar 

  • T.L. Dangerfield, N.Z. Huang, K.A. Johnson, High throughput quantification of short nucleic acid samples by capillary electrophoresis with automated data processing. Anal. Biochem. 629, 114239 (2021)

    Article  Google Scholar 

  • M. Gaňová, H. Zhang, H. Zhu, M. Korabečná, P. Neužil, Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 181, 113155 (2021)

    Article  Google Scholar 

  • D. Hu, L. Yang, S. Deng, Y. Hao, K. Zhang, X. Wang, Y. Liu, H. Liu, Y. Chen, M. Xie, Development of nanosensor by bioorthogonal reaction for multi-detection of the biomarkers of hepatocellular carcinoma. Sens. Actuators B Chem. 334, 129653 (2021)

    Article  Google Scholar 

  • A. Jebelli, F. Oroojalian, F. Fathi, A. Mokhtarzadeh, M. de la Guardia, Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens. Bioelectron. 169, 112599 (2020)

    Article  Google Scholar 

  • T. Kilic, S.N. Topkaya, M. Ozsoz, A new insight into electrochemical microRNA detection: A molecular caliper, p19 protein. Biosens. Bioelectron. 48, 165 (2013)

    Article  Google Scholar 

  • P. Lavaee, S.M. Taghdisi, K. Abnous, N.M. Danesh, L.H. Khayyat, S.H. Jalalian, Fluorescent sensor for detection of miR-141 based on target-induced fluorescence enhancement and PicoGreen. Talanta 202, 349 (2019)

    Article  Google Scholar 

  • R. Liu, Q. Wang, Q. Li, X. Yang, K. Wang, W. Nie, Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens. Bioelectron. 87, 433 (2017)

    Article  Google Scholar 

  • Y. Li, Y. Yan, Y. Lei, D. Zhao, T. Yuan, D. Zhang, W. Cheng, S. Ding, Surface plasmon resonance biosensor for label-free and highly sensitive detection of point mutation using polymerization extension reaction. Colloids Surf. B 120, 15 (2014a)

    Article  Google Scholar 

  • X. Li, Y. Wang, L. Wang, Q. Wei, A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules. Chem. Commun. 50, 5049 (2014b)

    Article  Google Scholar 

  • L.C. Oliveira, C. da Silva Moreira, C. Thirstrup, E.U.K. Melcher, A.M.N. Lima, H. Neff, A surface plasmon resonance biochip that operates both in the angular and wavelength interrogation modes. IEEE Trans. Instrum. Meas. 62, 1223 (2013)

    Article  Google Scholar 

  • H. Raether, Surface plasma oscillations and their applications. Phys of Thin Films 9, 145 (1977)

    Google Scholar 

  • S. Rampazzi, G. Danese, F. Leporati, F. Marabelli, A localized surface plasmon resonance-based portable instrument for quick on-site biomolecular detection. IEEE Trans. Instrum. Meas. 65, 317 (2016)

    Article  Google Scholar 

  • P. Singh, SPR biosensors: Historical perspectives and current challenges. Sens. Actuators B Chem. 229, 110 (2016)

    Article  Google Scholar 

  • S. Sarkar, M. Gogoi, M. Mahato, A.B. Joshi, A.J. Baruah, P. Kodgire, P. Boruah, Biosensors for detection of prostate cancer: a review. Biomed Microdevices 24, 32 (2022)

    Article  Google Scholar 

  • F.J. da Silva, L.C. Oliveira, A.M.N. Lima, An automated platform for surface plasmon resonance-based sensors. IEEE Trans. Instrum. Meas. 70, 1 (2021)

    Article  Google Scholar 

  • L. Sterpone, A novel dual-core architecture for the analysis of DNA microarray images. IEEE Trans. Instrum. Meas. 58, 2653 (2009)

    Article  Google Scholar 

  • K. Tamada, F. Nakamura, M. Ito, X. Li, A. Baba, SPR-based DNA detection with metal nanoparticles. Plasmonics 2, 185 (2007)

    Article  Google Scholar 

  • C. Thirstrup, W. Zong, M. Borre, H. Neff, H. Pedersen, G. Holzhueter, Diffractive optical coupling element for surface plasmon resonance sensors. Sens. Actuators B Chem. 100, 298 (2004)

    Article  Google Scholar 

  • H. Wang, H. Wang, H. Zhang, Y. Huang, N. Zhang, W. Li, X. Qiu, D. Yu, L. Zhang, Integration of a multichannel surface plasmon resonance sensor chip and refractive index matching film array for protein detection in human urine. Talanta 246, 123533 (2022a)

    Article  Google Scholar 

  • H. Wang, H. Wang, Z. Tian, H. Zhang, Y. Huang, X. Qiu, D. Yu, L. Zhang, Analysis of biomolecular interaction process based on SPR imaging method in microfluidic chips. Plasmonics 17, 621 (2022b)

    Article  Google Scholar 

  • Q. Wang, H. Song, A. Zhu, F. Qiu, A label-free and anti-interference dual-channel SPR fiber optic sensor with self-compensation for biomarker detection. IEEE Trans. Instrum. Meas. 70, 1 (2021)

    Article  Google Scholar 

  • Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He, Q. Li, Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich. Sens. Actuators B Chem. 223, 613 (2016)

    Article  Google Scholar 

  • S. Xu, Y. Chang, Z. Wu, Y. Li, R. Yuan, Y. Chai, One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosens. Bioelectron. 149, 111848 (2020)

    Article  Google Scholar 

  • B.-C. Yin, Y.-Q. Liu, B.-C. Ye, One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J. Am. Chem. Soc. 134, 5064 (2012)

    Article  Google Scholar 

  • Y. Zhang, P. Zhang, L. Chen, A. Kaushik, K. Hu, T.-H. Wang, ddRFC: A scalable multiplexed droplet digital nucleic acid amplification test platform. Biosens. Bioelectron. 167, 112499 (2020)

    Article  Google Scholar 

  • A. Zybin, D. Boecker, V.M. Mirsky, K. Niemax, Enhancement of the detection power of surface plasmon resonance measurements by optimization of the reflection angle. Anal. Chem. 79, 4233 (2007)

    Article  Google Scholar 

  • Y.-N. Zhang, E. Siyu, B. Tao, Q. Wu, B. Han, Reflective SPR sensor for simultaneous measurement of nitrate concentration and temperature. IEEE Trans. Instrum. Meas. 68, 4566 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61971026, the Natural Science Foundation of Beijing Municipality under Grant 4202053, the National Natural Science Foundation of China under Grant 81871505, the Joint Project of BRC-BC (Biomedical Translational Engineering Research Center of BUCT-CJFH) under Grant XK2020-15, and the Fundamental Research Funds for the Central Universities under Grant BUCTRC201905.

Author information

Authors and Affiliations

Authors

Contributions

Huixiang Wang: Investigation, Conceptualization, Methodology, Validation, Writing – original draft. Honggang Wang: Investigation, Methodology. Hao Zhang: Investigation, Data curation. Yafeng Huang: Software. Yongdong Fu: Investigation, Data Processing. Zhenwei Yang: Investigation, Resources. Yuanyuan Chen: Formal analysis, Resources. Xianbo Qiu: Resources, Supervision. Duli Yu: Resources, Supervision. Lulu Zhang: Supervision, Conceptualization, Funding acquisition, Validation, Writing – review & editing

Corresponding author

Correspondence to Lulu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16952 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, H., Huang, Y. et al. Multi-parameter surface plasmon resonance instrument for multiple nucleic acid quantitative detection. Biomed Microdevices 25, 24 (2023). https://doi.org/10.1007/s10544-023-00664-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-023-00664-0

Keywords

Navigation