Skip to main content
Log in

Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of cancer biomarkers freely circulating in blood offers new opportunities for cancer early diagnosis, patient follow-up, and therapy efficacy assessment based on liquid biopsy. In particular, circulating cell-free nucleic acids released from tumor cells have recently attracted great attention also because they become detectable in blood before the appearance of other circulating biomarkers, such as circulating tumor cells. The detection of circulating nucleic acids poses several technical challenges that arise from their low concentration and relatively small size. Here, possibilities offered by innovative biosensing approaches for the detection of circulating DNA in peripheral blood and blood-derived products such as plasma and serum blood are discussed. Different transduction principles are used to detect circulating DNAs and great advantages are derived from the combined use of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359–86.

    Article  Google Scholar 

  2. Ortmann CA, Kent DG, Nangalia J. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372:1865–6.

    Article  Google Scholar 

  3. Diamantis A, Magiorkinis E, Koutselini H. Fine-needle aspiration (FNA) biopsy: historical aspects. Folia Histochem Cytobiol. 2009;47(2):191–7.

    Article  Google Scholar 

  4. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10:472–84.

    Article  CAS  Google Scholar 

  5. Gerlinger M. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  Google Scholar 

  6. Alix-Panabières C, Pantel K. Challenges in circulating tumor cell research. Nat Rev Cancer. 2014;14:623–31.

    Article  Google Scholar 

  7. Taylor DD, Gercel-Taylor C. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol. 2011;33(5):441–54.

    Article  CAS  Google Scholar 

  8. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;2087–2092.

  9. Deprimo SE, Bello CL, Smeraglia J, Baum CM, Spinella D, Rini BI, Michaelson MD, Motzer RJ. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med. 2007;5:32.

    Article  Google Scholar 

  10. Luna Coronell JA, Syed P, Sergelen K, Gyurján I, Weinhäusel A. The current status of cancer biomarker research using tumor-associated antigens for minimal invasive and early cancer diagnostics. J Proteom. 2012;76:102–15.

    Article  CAS  Google Scholar 

  11. Tsui DWY, Berger MF. Profiling non-small cell lung cancer: from tumor to blood. Clin Cancer Res. 2016;22(4):790–2.

    Article  CAS  Google Scholar 

  12. Chi KR. The tumor trail left in blood. Nature. 2016;532:269–71.

    Article  CAS  Google Scholar 

  13. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, Ahlquist DA, Berger BM. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370:1287–97.

    Article  CAS  Google Scholar 

  14. Market analysis report. Global liquid biopsy market outlook to 2020. RNCOS. 2016.

  15. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20(4):430–6.

    Article  CAS  Google Scholar 

  16. Bettegowda C, Sausen M, Leary RJ. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  Google Scholar 

  17. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209.

    Article  CAS  Google Scholar 

  18. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142:241–3.

    CAS  Google Scholar 

  19. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    CAS  Google Scholar 

  20. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46(5):318–22.

    Article  CAS  Google Scholar 

  21. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol. 1994;86(4):774–9.

    Article  CAS  Google Scholar 

  22. Lebofsky R, Decraene C, Bernard V, Kamal M, Blin A, Leroy Q, Frio TR, Pierron G, Callens C, Bieche I, Saliou A, Madic J, Rouleau E, Bidard FC, Lantz O, Stern MH, Tourneau CL, Pierga JY. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Mol Oncol. 2015;9:783–90.

    Article  CAS  Google Scholar 

  23. Benesova L, Belsanova B, Suchanek S, Kopeckova M, Minarikova P, Lipska L, Levy M, Visokai V, Zavoral M, Minarik M. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem. 2013;433(2):227–34.

    Article  CAS  Google Scholar 

  24. Mauger F, Dulary C, Daviaud C, Deleuze J-F, Tost J. Comprehensive evaluation of methods to isolate, quantify, and characterize circulating cell-free DNA from small volumes of plasma. Anal Bioanal Chem. 2015;407(22):6873–8.

    Article  CAS  Google Scholar 

  25. Szpechcinski A, Chorostowska-Wynimko J, Struniawski R, Kupis W, Rudzinski P, Langfort R, Puscinska E, Bielen P, Sliwinski P, Orlowski T. Cell-free DNA levels in plasma of patients with non-small-cell lung cancer and inflammatory lung disease. Br J Cancer. 2015;113(3):476–83.

    Article  CAS  Google Scholar 

  26. Perkins G, Yap TA, Pope L, Cassidy AM, Dukes JP, Riisnaes R. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS ONE. 2012;7(11), e47020.

    Article  CAS  Google Scholar 

  27. Garm Spindler KL, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A. Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer. PLoS ONE. 2015;10(4), e0108247.

    Article  Google Scholar 

  28. Cristofanilli M, Fortina P. Circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;369:93–4.

    Article  CAS  Google Scholar 

  29. Panabières CA, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.

    Article  Google Scholar 

  30. Siravegna G, Bardelli A. Blood circulating tumor DNA for noninvasive genotyping of colon cancer patients. Mol Oncol. 2015;10(3):475–80.

    Article  Google Scholar 

  31. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA Jr. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  Google Scholar 

  32. Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.

    Article  Google Scholar 

  33. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  Google Scholar 

  34. Banerji S. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    Article  CAS  Google Scholar 

  35. Bratman SV, Newman AM, Alizadeh AA, Diehn M. Potential clinical utility of ultrasensitive circulating tumor DNA detection with CAPP-Seq. Expert Rev Mol Diagn. 2015;15(6):715–9.

    CAS  Google Scholar 

  36. Ogasawara N, Bando H, Kawamoto Y, Yoshino T, Tsuchihara K, Ohtsu A, Esumiet H. Feasibility and robustness of amplification refractory mutation system (ARMS)-based KRAS testing using clinically available formalin-fixed, paraffin-embedded samples of colorectal cancers. J Clin Oncol. 2011;41(1):52–6.

    Google Scholar 

  37. Chen Z, Feng J, Buzin CH, Liu Q, Weiss L, Kernstine K, Somlo G, Sommeret SS. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS ONE. 2009;4(9), e7220.

    Article  Google Scholar 

  38. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.

  39. Mancini I, Santucci C, Sestini R, Simi L, Pratesi N, Cianchi F, Valanzano R, Pinzani P, Orlando C. The Use of COLD-PCR and high-resolution melting analysis improves the limit of detection of KRAS and BRAF mutations in colorectal cancer. J Mol Diagn. 2010;12(5):705–11.

    Article  CAS  Google Scholar 

  40. Carotenuto P, Roma C, Cozzolino S, Fenizia F, Rachiglio AM, Tatangelo F, Iannaccone A, Baron L, Botti G, Normanno N. Detection of KRAS mutations in colorectal cancer with Fast COLD-PCR. Int J Oncol. 2012;40(2):378–84.

    CAS  Google Scholar 

  41. Pinzani P, Santucci C, Mancini I, Simi L, Salvianti F, Pratesi N. BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin Chim Acta. 2011;412(11/12):901–5.

    Article  CAS  Google Scholar 

  42. Ausch C, Buxhofer-Ausch V, Oberkanins C, Holzer B, Minai-Pour M, Jahn S, Dandachi N, Zeillinger R, Kriegshäuser G. Sensitive detection of KRAS mutations in archived formalin-fixed paraffin-embedded tissue using mutant-enriched PCR and reverse-hybridization. J Mol Diagn. 2009;11(6):508–13.

    Article  CAS  Google Scholar 

  43. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz Jr. LA, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102(45):16368–73.

    Article  CAS  Google Scholar 

  44. Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S, Powers P. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18(12):3462–9.

    Article  CAS  Google Scholar 

  45. Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T, Okami J. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res. 2011;17(24):7808–15.

    Article  CAS  Google Scholar 

  46. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O’Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz Jr. LA, Velculescu VE. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154.

  47. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015;61(1):297–304.

    Article  CAS  Google Scholar 

  48. Abdel-Wahab O, Klimek VM, Gaskell AA, Viale A, Cheng D, Kim E. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov. 2014;4(5):538–45.

    Article  Google Scholar 

  49. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A, Messineo MM. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.

    Article  CAS  Google Scholar 

  50. Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014;20(10):2643–50.

    Article  CAS  Google Scholar 

  51. Stadler J, Eder J, Pratscher B, Brandt S, Schneller D, Müllegger R. SNPase-ARMS qPCR: ultrasensitive mutation-based detection of cell-free tumor DNA in melanoma patients. PLoS ONE. 2015;10(11), e0142273.

    Article  Google Scholar 

  52. Florence M, Dulary C, Daviaud C, Deleuze J-F, Tost J. Comprehensive evaluation of methods to isolate, quantify and characterize circulating cell-free DNA from small volumes of plasma. Anal Bioanal Chem. 2015;407:6873–8.

    Article  Google Scholar 

  53. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.

    Article  CAS  Google Scholar 

  54. Spoto G, Corradini R. Detection of non-amplified genomic DNA. Dordrecht: Springer; 2012.

  55. Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity, and accuracy of biomolecular detection with multi-length scale engineering. Nat Nanotechnol. 2014;9:969–80.

    Article  CAS  Google Scholar 

  56. Krabbenborg SO, Nicosia C, Chen P, Huskens J. Reactivity mapping with electrochemical gradients for monitoring reactivity at surfaces in space and time. Nat Commun. 2013;4:1667.

    Article  Google Scholar 

  57. Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R. Peptide nucleic acids with a structurally biased backbone. updated review and emerging challenges. Curr Top Med Chem. 2011;11(12):1535–54.

    Article  CAS  Google Scholar 

  58. D’Agata R, Spoto G. Artificial DNA and surface plasmon resonance. Artificial DNA: PNA and XNA. 2012;3(2):45–52.

    Article  Google Scholar 

  59. Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst. 2015;140(2):386–406.

    Article  CAS  Google Scholar 

  60. Zanoli LM, D’Agata R, Spoto G. Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem. 2012;402(5):1759–71.

    Article  CAS  Google Scholar 

  61. Hyun KA, Kim J, Gwak H, Jung HI. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst. 2016;141:382–92.

    Article  CAS  Google Scholar 

  62. Lubin AA, Plaxco KW. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res. 2010;43(4):496–505.

    Article  CAS  Google Scholar 

  63. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63.

    Article  CAS  Google Scholar 

  64. Das J, Kelley SO. Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of CA-125 in SERUM AND WHOLE BLOOD. Anal Chem. 2011;83:1167–72.

    Article  CAS  Google Scholar 

  65. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc. 2006;128(34):11199–205.

    Article  CAS  Google Scholar 

  66. Hong CY, Chen X, Liu T, Li J, Yang HH, Chen JH, Chen GN. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron. 2013;50:132–6.

    Article  CAS  Google Scholar 

  67. Das J, Ivanov I, Montermini L, Rak J, Sargent EH, Kelley SO. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem. 2015;7:569–75.

    Article  CAS  Google Scholar 

  68. Bin X, Sargent EH, Kelley SO. Nanostructuring of sensors determines the efficiency of biomolecular capture. Anal Chem. 2010;14:5928–31.

    Article  Google Scholar 

  69. Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2015;87:230–49.

    Article  CAS  Google Scholar 

  70. Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. J Am Chem Soc. 2012;134(22):9082–5.

    Article  CAS  Google Scholar 

  71. Liu R, Wan L, Liu S, Pan L, Wu D, Zhao D. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Funct Mater. 2015;25:526–33.

    Article  CAS  Google Scholar 

  72. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc. 2010;132:14067–9.

    Article  CAS  Google Scholar 

  73. Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Appl Mater Interfaces. 2014;6:3242–9.

    Article  CAS  Google Scholar 

  74. Hongxia B, Ruiyi L, Zaijun L, Junkang L, Zhiguo G, Guangli W. Fabrication of a high density graphene aerogel–gold nanostar hybrid and its application for the electrochemical detection of hydroquinone and o-dihydroxybenzene. RSC Adv. 2015;5:54211–9.

    Article  Google Scholar 

  75. Ruiyi L, Ling L, Hongxia B, Zaijun L. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum. Biosens Bioelectron. 2016;79:457–66.

    Article  Google Scholar 

  76. Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev. 2008;108(1):109–39.

    Article  CAS  Google Scholar 

  77. Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A. 2015;112(11):3178–9.

    Article  CAS  Google Scholar 

  78. Liu KJ, Brock MV, Shih IM, Wang TH. Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy. J Am Chem Soc. 2010;132:5793–8.

    Article  CAS  Google Scholar 

  79. Brolo AG. Plasmonics for future biosensors. Nat Photon. 2012;6:709–13.

    Article  CAS  Google Scholar 

  80. D’Agata R, Spoto G. Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem. 2013;405(2/3):573–84.

    Article  Google Scholar 

  81. Spoto G, Minunni M. Surface plasmon resonance imaging: what next? J Phys Chem Lett. 2012;3(18):2682–91.

    Article  CAS  Google Scholar 

  82. Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev. 2008;37:2028–45.

    Article  CAS  Google Scholar 

  83. Truong PL, Cao C, Park S, Kim M, Sim SJ. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. LabChip. 2011;11:2591–7.

    CAS  Google Scholar 

  84. Devi RV, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015;68:688–98.

    Article  Google Scholar 

  85. Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, Kotov NA. Attomolar DNA detection with chiral nanorod assemblies. Nat Commun. 2013;4:2689.

    Google Scholar 

  86. D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R. Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem. 2011;83(22):8711–7.

    Article  Google Scholar 

  87. Ladd J, Taylor AD, Piliarik M, Homola J, Jiang S. Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem. 2009;393(4):1157–63.

    Article  CAS  Google Scholar 

  88. Grasso G, D'Agata R, Zanoli L, Spoto G. Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments. Microchemistry J. 2009;93:82–6.

    Article  CAS  Google Scholar 

  89. Sato Y, Fujimoto K, Kawaguchi H. Detection of a K-ras point mutation employing peptide nucleic acid at the surface of a SPR biosensor. Colloid Surf B. 2003;27:23–31.

    Article  CAS  Google Scholar 

  90. Bertucci A, Manicardi A, Candiani A, Giannetti S, Cucinotta A, Spoto G, Konstantaki M, Pissadakis S, Selleri S, Corradini R. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens Bioelectron. 2015;63:248–54.

    Article  CAS  Google Scholar 

  91. D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G. Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioelectron. 2010;25(9):2095–100.

    Article  Google Scholar 

  92. Carrascosa LG, Sina AAI, Palanisamy R, Sepulveda B, Otte MA, Rauf S, Shiddikya MJA, Trau M. Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation. Chem Commun. 2014. doi:10.1039/C3CC49607D.

    Google Scholar 

  93. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.

    Article  CAS  Google Scholar 

  94. Shalabney A, Abdulhalim I. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photon Rev. 2011;5(4):571–606.

    Article  CAS  Google Scholar 

  95. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  Google Scholar 

  96. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126(39):12669–76.

    Article  CAS  Google Scholar 

  97. Fong KE, Yung LY. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale. 2013;5(24):12043–71.

    Article  CAS  Google Scholar 

  98. Nguyen AH, Sim SJ. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA. Biosens Bioelectron. 2015;67:443–9.

    Article  CAS  Google Scholar 

  99. Dias TM, Cardoso FA, Martins SAM, Martins VC, Cardoso S, Gaspar JF, Monteiro G, Freitas PP. Implementing a strategy for on-chip detection of cell-free DNA fragments using GMR sensors: a translational application in cancer diagnostics using ALU elements. Anal Methods. 2016;8:119–28.

    Article  CAS  Google Scholar 

  100. Wei F, Lin CC, Joon A, Feng Z, Troche G, Lira ME, Chia D, Mao M, Ho CL, Su WC, Wong DTW. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am J Respir Crit Care Med. 2014;190:1117–26.

    Article  CAS  Google Scholar 

  101. Wei F, Yang J, Wong DTW. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). Biosens Bioelectron. 2013;44:115–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from MIUR PON R&C (Programma Operativo Nazionale “Ricerca e Competitività” 2007-2013) Hippocrates project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Spoto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Published in the topical collection Chemical Sensing Systems with guest editors Maria Careri, Marco Giannetto, and Renato Seeber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellassai, N., Spoto, G. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem 408, 7255–7264 (2016). https://doi.org/10.1007/s00216-016-9806-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9806-3

Keywords

Navigation