Skip to main content
Log in

Multipole moments from the partition–expansion method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Analytical expressions for the atomic multipole moments defined from the partition–expansion method are reported for both Gaussian and Slater basis sets. In case of Gaussian functions, two algorithms are presented and examined. The first one gives expressions in terms of generalized overlap integrals whose master formulas are derived here with the aid of the shift-operator technique. The second uses translation methods, which lead to integrals involving Gaussian and Bessel functions, which are also known. For Slater basis sets, an algorithm based on translation methods is reported. In this algorithm, atomic multipoles are expressed in terms of integrals involving Macdonald functions, which have been solved in previous works. The accuracy of these procedures is tested and their efficiency illustrated with practical applications, including the computation of the full molecular electrostatic potential (not only the long-range) in large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Politzer P, Truhlar D et al (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, Oxford

    Book  Google Scholar 

  2. Politzer P, Murray JS (1991) Molecular electrostatic potentials and chemical reactivity. Reviews in computational chemistry, vol 2. Wiley, New York, pp 273–312

  3. Roy DK, Balanarayan P, Gadre SR (2009) J Chem Sci 121:815

    Article  CAS  Google Scholar 

  4. Jones S, Shanahan HP, Berman HM, Thornton JM (2003) Nucleic Acids Res 31

  5. Honig B, Nicholls A (1992) Science 41:399

    Google Scholar 

  6. Neves-Petersen MT, Petersen SB (2003) Biotechnol Annu Rev 9:315

    Article  CAS  Google Scholar 

  7. Milstein JN, Koch C (2008) Neural Comput 20:2070

    Article  Google Scholar 

  8. Elking DM, Perera L, Duke1 R, Darden T, Pedersen LG (2010) J Comput Chem 31:2702

    Google Scholar 

  9. Leverentz HR, Gao J, Truhlar DG (2011) Theor Chem Acc 129:3

    Article  CAS  Google Scholar 

  10. Head-Gordon T, Hura G (2002) Chem Rev 102:2651

    Article  CAS  Google Scholar 

  11. Kumar R, Christie RA, Jordan KD (2009) J Phys Chem B 113:4111

    Article  CAS  Google Scholar 

  12. Paesani F, Xantheas S, Voth G (2009) J Phys Chem B 113:13118

    Article  CAS  Google Scholar 

  13. Wang W, Donini O, Reyes CM, Kollman PA (2001) Annu Rev Biophys Biomol Struct 30:211

    Article  CAS  Google Scholar 

  14. Karplus M, McCammon JA (2002) Nat Struct Mol Biol 9:646

    Article  CAS  Google Scholar 

  15. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, ADF2012, SCM, theoretical chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  16. te Velde G, Baerends EJ (1992) J Comput Phys 9:84

    Article  Google Scholar 

  17. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Article  CAS  Google Scholar 

  18. Roy D, Balanarayan P, Gadre SR (2008) J Chem Phys 129:174103

    Article  CAS  Google Scholar 

  19. Yeole S, López R, Gadre S (2012) J Chem Phys 137:074116

    Article  Google Scholar 

  20. Ema I, López R, Ramírez G, Rico JF (2011) Theor Chem Acc 128:115

    Article  CAS  Google Scholar 

  21. Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514

    Article  CAS  Google Scholar 

  22. Challacombe M, Schwegler E, Almlof J (1996) J Chem Phys 104:4685

    Article  CAS  Google Scholar 

  23. Challacombe M, Schwegler E (1997) J Chem Phys 106:5526

    Article  CAS  Google Scholar 

  24. Mamby FR, Knowles P (2001) Phys Rev Lett 87:163001

    Article  Google Scholar 

  25. Mamby FR, Knowles P, Lloyd AW (2001) J Chem Phys 115:9144

    Article  Google Scholar 

  26. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118:9136

    Article  CAS  Google Scholar 

  27. Rudberg E, Sałek P (2006) J Chem Phys 125:084106

    Article  Google Scholar 

  28. Rico JF, López R, Ramírez G (1999) J Chem Phys 110:4213

    Article  CAS  Google Scholar 

  29. Rico JF, López R, Ema I, Ramírez G (2002) J Chem Phys 117:533

    Article  Google Scholar 

  30. Rico JF, López R, Ema I, Ramírez G, Ludeña E (2004) J Comput Chem 25:1355

    Article  CAS  Google Scholar 

  31. Rico JF, López R, Ema I, Ramírez G (2004) J Comput Chem 25:1347

    Article  CAS  Google Scholar 

  32. López R, Ramírez G, Ema I, Rico JF (2013) J Comput Chem. doi:10.1002/jcc.23306

  33. López R, Rico JF, Ramírez G, Ema I, Zorrilla D (2009) Comput Phys Commun 180:1654

    Article  Google Scholar 

  34. Stone AJ (2000) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  35. Stone A (2005) J Chem Theory Comput 1:1128

    Article  CAS  Google Scholar 

  36. Karlström G, Linse P, Wallqvist A, Jönsson B (1983) J Am Chem Soc 105:3777

    Article  Google Scholar 

  37. Le HA, Lee AM, Bettens RPA (2009) J Phys Chem A 113:10527

    Article  CAS  Google Scholar 

  38. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    Article  CAS  Google Scholar 

  39. Polly R, Werner HJ, Mamby FR, Knowles P (2004) Mol Phys 102:2311

    Article  CAS  Google Scholar 

  40. Aquilante F, Lindh R, Pedersen TB (2007) J Chem Phys 127:114107

    Article  Google Scholar 

  41. Aquilante F, Gagliardi L, Pedersen TB, Lindh R (2009) J Chem Phys 130:154107

    Article  Google Scholar 

  42. Weigend F, Kattannek M, Ahlrichs R (2009) J Chem Phys 130:164106

    Article  Google Scholar 

  43. Rico JF, Fernández JJ, López R, Ramírez G (2000) Int J Quantum Chem 78:137

    Article  CAS  Google Scholar 

  44. Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series and products, 4th edn. Academic Press, New York

    Google Scholar 

  45. Abramowitz M, Stegun I (1970) Handbook of mathematical functions, 9th edn. Dover, New York

    Google Scholar 

  46. Steinborn EO, Ruedenberg K (1973) Adv Quantum Chem 7:1

    Article  CAS  Google Scholar 

  47. Shavitt I, Karplus M (1962) J Chem Phys 36:550

    Article  CAS  Google Scholar 

  48. Shavitt I (1963) Molecular integrals between real and between complex atomic orbitals. Methods in computational physics, vol. 2. Academic Press, New York, pp. 1–45

  49. Shavitt I, Karplus M (1965) J Chem Phys 43:398

    Article  CAS  Google Scholar 

  50. Kern CW, Karplus M (1965) J Chem Phys 43:415

    Article  CAS  Google Scholar 

  51. Rico JF, López R, Ema I, Ramírez G (2006) Int J Quantum Chem 106:1986

    Article  Google Scholar 

  52. Ema I, López R, Fernández J, Ramírez G, Rico JF (2007) Int J Quantum Chem 108:25

    Article  Google Scholar 

  53. Mason J, Handscomb D (2003) Chebyshev polynomials. Chapman & Hall, Boca Raton

    Google Scholar 

  54. Schäfer A, Huber C, Ahlrichs R (1994) Chem Phys 100:5829

    Article  Google Scholar 

  55. Ema I, Garcíadela Vega JM, Ramírez G, López R, Rico JF, Meissner H, Paldus J (2003) J Comput Chem 24:859

    Article  CAS  Google Scholar 

  56. Rico JF, López R, Ema I, Ramírez G (2013) Int J Quantum Chem 113:1544

    Article  CAS  Google Scholar 

  57. Hobson E (1931) The theory of spherical and ellipsoidal harmonics. Cambridge University Press, London

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Noel Ferro for supplying us the geometry of the C127O24N28H204Zn system. Financial support from MICINN (CTQ2010-19232) and from the CAM (S2009_PPQ-1545, LIQUORGAS) is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael López.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (35 KB)

Appendix 1: Generalized overlap integrals for spherical Gaussians

Appendix 1: Generalized overlap integrals for spherical Gaussians

A shift-operator [43] acting on the simplest function of a given type (GTO, STO, …) produces a general function of that type. For a GTO centerd at R I ≡ (X I Y I Z I ) one has:

$$\frac{1}{(2 \xi)^L} \; z_L^M(\nabla_I) \; \hbox{e}^{-\xi\, r_I^2} = z_L^M({\bf r}_I) \; \hbox{e}^{-\xi r_I^2}$$
(37)

where z M L (∇ I ) is the differential operator resultant from the substitution of the Cartesian coordinates in z M L (X I Y I Z I ) by the derivatives with respect to them.

From Eq. (37), it follows:

$$\begin{aligned} \left\langle g_{LM} \vert g^{\prime}_{L^{\prime} M^{\prime}} \right\rangle & \equiv & \int \hbox{d}{\bf r} \; z_L^M({\bf r}_I) \; \hbox{e}^{-\xi r_I^2} \; z_{L^{\prime}}^{M^{\prime}}({\bf r}_J) \; \hbox{e}^{-\xi^{\prime} r_J^2}\\ & = & \frac{1}{(2 \xi)^L} \; \frac{1}{(2 \xi^{\prime})^{L^{\prime}}} \; z_L^M(\nabla_I) \; z_{L^{\prime}}^{M^{\prime}}(\nabla_J) \; \left\langle g \vert g^{\prime} \right\rangle \end{aligned}$$
(38)

where \(\langle g \vert g^{\prime} \rangle\) is the integral involving the simplest GTO functions. This well-known integral, that can be derived from the Gaussian product theorem, is:

$$\left\langle g \vert g^{\prime}\right \rangle \equiv \int \hbox{d}{\bf r} \; \hbox{e}^{-\xi \, r_I^2} \; \hbox{e}^{-\xi^{\prime} r_J^2} = \left(\frac{\pi}{\xi + \xi^{\prime}}\right)^{3/2} \; \hbox{e}^{-\xi \xi^{\prime} R^2/(\xi + \xi^{\prime})}$$
(39)

where R = |R I  − R J |.

Let f(R) be a function which depends on X I , Y I , Z I , X J , Y J , Z J , only through R, although it may depend on other parameters such as exponents. From a theorem due to Hobson [57], it follows that [52]:

$$z_L^M(\nabla_I) \; z_{L'}^{M'}(\nabla_J) \; f(R) =\,(-1)^L \; \sum_{k=0}^{L_<} {\fancyscript{P}}_k^{LM L'M'}({\bf R}) \; \left(\frac{1}{R} \frac{\partial}{\partial R}\right)^{L+L'-k} \; f(R)$$
(40)

where

$${\fancyscript{P}}_k^{LM L^{\prime}M^{\prime}}({\bf R}) = \frac{2^{k}}{k!} \; \sum_{l=k}^{L_<} \; \frac{l! \; \varGamma(L+L^{\prime}-l+3/2) \; R^{2l-2k}}{(l-k)! \; \varGamma(L+L^{\prime}-l-k+3/2)} \; \sum_m \alpha_{L+L^{\prime}-2l, m}^{LM, L^{\prime}M^{\prime}} \; z_{L+L^{\prime}-2l}^{m}({\bf R})$$
(41)

\(\alpha_{L+L^{\prime}-2l, m}^{LM, L^{\prime}M^{\prime}}\) being the coefficients appearing in Eq. (16).

By combining Eqs. (38), (39), and (40), and bearing in mind that \(\left(\frac{1}{R} \frac{\partial}{\partial R}\right) = 2 \frac{\partial}{\partial(R^2)},\) the master formula for spherical overlap integrals is obtained:

$$\begin{aligned} \left\langle g_{LM} \vert g^{\prime}_{L^{\prime}M^{\prime}}\right\rangle & = (-1)^{L^{\prime}} \; \frac{\pi^{3/2} \; \xi^{L^{\prime}} \; {\xi^{\prime}}^L}{(\xi + \xi^{\prime})^{L+L^{\prime}+3/2}} \;\hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})}\\ &\quad\times \sum_{k=0}^{L_<} (-1/2)^k \; {\fancyscript{P}}_k^{LM L^{\prime}M^{\prime}}({\bf R}) \; \biggl( \frac{\xi+\xi^{\prime}}{\xi \xi^{\prime}} \biggr)^k \end{aligned}$$
(42)

Taking into account that:

$$r_I^{2n} \; \hbox{e}^{-\xi r_I^2} = \left(-\frac{\partial}{\partial\xi}\right)^n \; \hbox{e}^{-\xi r_I^2}$$
(43)

one has:

$$\begin{aligned} \left\langle g^n_{LM} \vert g^{\prime}_{L^{\prime} M^{\prime}} \right\rangle & = \left(-\frac{\partial}{\partial\xi}\right)^n \; \langle g_{LM} \vert g^{\prime}_{L^{\prime} M^{\prime}} \rangle\\ &= (-1)^{L^{\prime}} \; \pi^{3/2} \; \sum_{k=0}^{L_<} (-1/2)^k \; {\fancyscript{P}}_k^{LM L^{\prime}M^{\prime}}({\bf R}) \; {\xi^{\prime}}^{L-k}\\ &\quad \times \biggl(-\frac{\partial}{\partial\xi} \biggr)^n \; \frac{\xi^{L^{\prime}-k}}{{(\xi + \xi^{\prime})^{L+L^{\prime}+3/2-k}}} \; \hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})} \end{aligned}$$
(44)

so that the problem is reduced to find:

$$\begin{aligned} \biggl(-\frac{\partial}{\partial\xi} \biggr)^n \; \frac{\xi^{L^{\prime}-k}}{{(\xi + \xi^{\prime})^{L+L^{\prime}+3/2-k}}} \; \hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})} &= \sum_{p=0}^{n} {n \choose p} \; \biggl[ \biggl( - \frac{\partial}{\partial\xi} \biggr)^{p} \; \hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})} \biggr]\\ &\quad \times \biggl[\biggl(-\frac{\partial}{\partial\xi} \biggr)^{n-p} \; \frac{\xi^{L^{\prime}-k}}{{(\xi + \xi^{\prime})^{L+L^{\prime}+3/2-k}}} \biggr] \end{aligned}$$
(45)

It is not difficult to prove that:

$$\begin{aligned} \biggl( - \frac{\partial}{\partial\xi} \biggr)^{p} \; \hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})} &= \hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})} \; \sum_{i=0}^{p-1} \frac{p! \; (p-1)!}{(p-1-i)! \; (i+1)! \; i!} \; \frac{({\xi^{\prime}}^2 R^2)^{i+1}}{(\xi + \xi^{\prime})^{p+1+i}}\\ & = p! \; \hbox{e}^{-\xi \xi^{\prime} R^2 / (\xi + \xi^{\prime})} \; \frac{{\xi^{\prime}}^2 R^2}{(\xi + \xi^{\prime})^{p+1}} \; _1F_1\biggl( -p+1; 2; -\frac{{\xi^{\prime}}^2 R^2}{\xi + \xi^{\prime}} \biggr)\quad p > 0 \end{aligned}$$
(46)

and that:

$$\begin{aligned} \biggl( - \frac{\partial}{\partial\xi} \biggr)^{n-p} \; \frac{\xi^{L^{\prime}-k}}{{(\xi + \xi^{\prime})^{L+L^{\prime}+3/2-k}}} &= \sum_{i=0}^{{\rm min}(n-p, L^{\prime}-k)} (-1)^i \; \frac{\xi^{L^{\prime}-k-i}}{(\xi + \xi^{\prime})^{n+L+L^{\prime}+3/2-k-p-i}}\\ &\quad \times\frac{(n-p)! \; (L^{\prime}-k)! \; (n+L+L^{\prime}+1/2-k-p-i)!}{(n-p-i)! \; (L^{\prime}-k-i)! \; (L+L^{\prime}+1/2-k)! \; i!}\\ & = \frac{\xi^{L^{\prime}-k}}{(\xi + \xi^{\prime})^{n+L+L^{\prime}+3/2-k-p}} \; \frac{(n+L+L^{\prime}+1/2-k-p)!}{(L+L^{\prime}+1/2-k)!} \;\\ &\quad \times _2F_1\biggl(-n+p,-L^{\prime}+k;-n-L-L^{\prime}-1/2+k+p;\frac{\xi+\xi^{\prime}}{\xi} \biggr) \end{aligned}.$$
(47)

Joining these results, Eq. (18) of the main text follows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, R., Ramírez, G., Fernández, J. et al. Multipole moments from the partition–expansion method. Theor Chem Acc 132, 1406 (2013). https://doi.org/10.1007/s00214-013-1406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1406-0

Keywords

Navigation