Skip to main content
Log in

Using multipole point charge distributions to provide the electrostatic potential in the variational explicit polarization (X-Pol) potential

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The equations defining the variational explicit polarization (X-Pol) potential introduced in earlier work are modified in the present work so that multipole point charge distributions are used instead of Mulliken charges to polarize the monomers that comprise the system. In addition, when computing the electrostatic interaction between a monomer whose molecular orbitals are being optimized and a monomer whose electron density is being used to polarize the first monomer, the electron densities of both monomers are represented by atom-centered multipole point charge distributions. In the original formulation of the variational X-Pol potential, the continuous electron density of the monomer being optimized interacts with external Mulliken charges, but this corresponds to the monopole truncation in a multipole expansion scheme in the computation of the Fock matrix elements of the given monomer. The formulation of the variational X-Pol potential introduced in this work (which we are calling the “multipole variational X-Pol potential”) represents the electron density of the monomer whose wave function is being variationally optimized in the same way that it represents the electron densities of external monomers when computing the Coulomb interactions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie W, Gao J (2007) J Chem Theory Comput 3:1890

    Article  CAS  Google Scholar 

  2. Xie W, Song L, Truhlar DG, Gao J (2008) J Chem Phys 128:234108-1

    Google Scholar 

  3. Xie W, Song L, Truhlar DG, Gao J (2008) J Phys Chem B 112:14124

    Article  CAS  Google Scholar 

  4. Xie W, Orozco M, Truhlar DG, Gao J (2009) J Chem Theory Comput 5:459

    Article  CAS  Google Scholar 

  5. Song L, Han J, Lin Y, Xie W, Gao J (2009) J Phys Chem A 113:11656

    Article  CAS  Google Scholar 

  6. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  7. Gao J (1998) J Chem Phys 109:2346

    Article  CAS  Google Scholar 

  8. Li J, Zhu T, Cramer CJ, Truhlar DG (1998) J Phys Chem A 102:1820

    Article  CAS  Google Scholar 

  9. Pople JA, Beveridge D (1970) Approximate molecular orbital theory. McGraw-Hill, New York

    Google Scholar 

  10. Stewart JP (1990) J Comput-Aided Mol Design 4:1

    Article  Google Scholar 

  11. Sokalski WA, Poirier RA (1983) Chem Phys Lett 98:86

    Article  CAS  Google Scholar 

  12. Sokalski WA, Sawaryn A (1987) J Chem Phys 87:526

    Article  CAS  Google Scholar 

  13. Koster AM, Kolle C, Jug K (1993) J Chem Phys 99:1224

    Article  Google Scholar 

  14. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899

    Article  CAS  Google Scholar 

  15. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  16. Stewart JJP (1989) J Comp Chem 10:209

    Article  CAS  Google Scholar 

  17. Stewart JJP (1989) J Comp Chem 10:221

    Article  CAS  Google Scholar 

  18. Dewar MJS, Thiel W (1977) Theoret Chim Acta 46:89

    Article  CAS  Google Scholar 

  19. Adamovic I, Freitag MA, Gordon MS (2003) J Chem Phys 118:6725

    Article  CAS  Google Scholar 

  20. Langner KM, Sokalski WA, Leszczynski J (2007) J Chem Phys 127:111102

    Article  Google Scholar 

  21. Roothaan CCJ (1951) Rev Mod Phys 23:69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health (grant no. GM46736 and RC1-GM091445) and the National Science Foundation (grant no. CHE09-56776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah R. Leverentz.

Appendix

Appendix

See Appendix Table 3.

Table 3 Additional values of \( c_{apq}^{{}} \) associated with multipole distribution representations of monatomic differential overlap distributions when interfragment quadrupole interactions are included

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leverentz, H.R., Gao, J. & Truhlar, D.G. Using multipole point charge distributions to provide the electrostatic potential in the variational explicit polarization (X-Pol) potential. Theor Chem Acc 129, 3–13 (2011). https://doi.org/10.1007/s00214-011-0889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0889-9

Keywords

Navigation