Skip to main content
Log in

Atomic basis functions for molecular electronic structure calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Electronic structure methods for accurate calculation of molecular properties have a high cost that grows steeply with the problem size; therefore, it is helpful to have the underlying atomic basis functions that are less in number but of higher quality. Following our earlier work (Laikov in Chem Phys Lett 416:116, 2005. https://doi.org/10.1016/j.cplett.2005.09.046) where general correlation-consistent basis sets are defined, for any atom, as solutions of purely atomic functional minimization problems, and which are shown to work well for chemical bonding in molecules, we take a further step here and define a new kind of atomic polarization functionals, whose minimization yields additional sets of diffuse functions that help to calculate better molecular electron affinities, polarizabilities, and intermolecular dispersion interactions. Analytical representations by generally contracted Gaussian functions of up to microhartree numerical accuracy grades are developed for atoms hydrogen through nobelium within the four-component Dirac–Coulomb theory and its scalar-relativistic approximation, and also for hydrogen through krypton in the nonrelativistic case. The convergence of correlation energy with the basis set size is studied, and complete-basis-set extrapolation formulas are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heitler W, London F (1927) Z Physik 44:455. https://doi.org/10.1007/bf01397394

    Article  CAS  Google Scholar 

  2. Lennard-Jones JE (1929) Trans Faraday Soc 25:668. https://doi.org/10.1039/tf9292500668

    Article  CAS  Google Scholar 

  3. Schrödinger E (1926) Ann Phys 384:361. https://doi.org/10.1002/andp.19263840404

    Article  Google Scholar 

  4. Schrödinger E (1926) Phys Rev 28:1049. https://doi.org/10.1103/PhysRev.28.1049

    Article  Google Scholar 

  5. Dirac PAM (1928) Proc R Soc Lond Ser A 117:610. https://doi.org/10.1098/rspa.1928.0023

    Article  Google Scholar 

  6. Zener C (1930) Phys Rev 36:51. https://doi.org/10.1103/PhysRev.36.51

    Article  CAS  Google Scholar 

  7. Slater JC (1930) Phys Rev 36:57. https://doi.org/10.1103/PhysRev.36.57

    Article  CAS  Google Scholar 

  8. Hartree DR (1928) P Camb Philos Soc 24:89. https://doi.org/10.1017/S0305004100011919

    Article  CAS  Google Scholar 

  9. Fock V (1930) Z Physik 61:126. https://doi.org/10.1007/BF01340294

    Article  Google Scholar 

  10. Roothaan CCJ (1951) Rev Mod Phys 23:69. https://doi.org/10.1103/RevModPhys.23.69

    Article  CAS  Google Scholar 

  11. Löwdin PO (1955) Phys Rev 97:1474. https://doi.org/10.1103/PhysRev.97.1474

    Article  Google Scholar 

  12. Kohn W, Sham LJ (1965) Phys Rev 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  13. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41. https://doi.org/10.1016/0301-0104(73)80059-X

    Article  CAS  Google Scholar 

  14. Lenthe EV, Baerends EJ (2003) J Comput Chem 24:1142. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  15. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597. https://doi.org/10.1063/1.466059

    Article  Google Scholar 

  16. Boys SF (1950) Proc R Soc A 200:542. https://doi.org/10.1098/rspa.1950.0036

    Article  CAS  Google Scholar 

  17. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657. https://doi.org/10.1063/1.1672392

    Article  CAS  Google Scholar 

  18. Stewart RF (1970) J Chem Phys 52:431. https://doi.org/10.1063/1.1672702

    Article  CAS  Google Scholar 

  19. Ditchfield R, Hehre WJ, Pople JA (1970) J Chem Phys 52:5001. https://doi.org/10.1063/1.1672736

    Article  CAS  Google Scholar 

  20. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  21. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  22. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  23. Frisch MJ, Pople JA (1984) J Chem Phys 80:3265. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  24. Møller C, Plesset MS (1934) Phys Rev 46:618. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  25. Bartlett RJ (1975) J Chem Phys 62:3258. https://doi.org/10.1063/1.430878

    Article  CAS  Google Scholar 

  26. Pople JA, Seeger R, Krishnan R (1977) Int J Quantum Chem 12:149. https://doi.org/10.1002/qua.560120820

    Article  Google Scholar 

  27. Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91. https://doi.org/10.1002/qua.560140109

    Article  CAS  Google Scholar 

  28. Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244. https://doi.org/10.1063/1.439657

    Article  CAS  Google Scholar 

  29. Raghavachari K, Pople JA, Replogle ES, Head-Gordon M (1990) J Phys Chem 94:5579. https://doi.org/10.1021/j100377a033

    Article  CAS  Google Scholar 

  30. Coester F (1958) Nucl Phys 7:421. https://doi.org/10.1016/0029-5582(58)90280-3

    Article  Google Scholar 

  31. Coester F, Kümmel H (1960) Nucl Phys 17:477. https://doi.org/10.1016/0029-5582(60)90140-1

    Article  CAS  Google Scholar 

  32. Čížek J (1966) J Chem Phys 45:4256. https://doi.org/10.1063/1.1727484

    Article  Google Scholar 

  33. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910. https://doi.org/10.1063/1.443164

    Article  CAS  Google Scholar 

  34. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185. https://doi.org/10.1016/0009-2614(89)85013-4

    Article  CAS  Google Scholar 

  35. Ragavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479. https://doi.org/10.1016/S0009-2614(89)87395-6

    Article  Google Scholar 

  36. Friesner RA (1988) J Phys Chem 92:3091. https://doi.org/10.1021/j100322a017

    Article  CAS  Google Scholar 

  37. Ringnalda MN, Belhadj M, Friesner RA (1990) J Chem Phys 93:3397. https://doi.org/10.1063/1.458819

    Article  CAS  Google Scholar 

  38. Greeley BH, Russo TV, Mainz DT, Friesner RA, Langlois JM, Goddard WA III, Donnelly RE Jr, Ringnalda MN (1994) J Chem Phys 101:4028. https://doi.org/10.1063/1.467520

    Article  CAS  Google Scholar 

  39. Termath V, Handy NC (1994) Chem Phys Lett 230:17. https://doi.org/10.1016/0009-2614(94)01160-5

    Article  CAS  Google Scholar 

  40. Murphy RB, Pollard WT, Friesner RA (1997) J Chem Phys 106:5073. https://doi.org/10.1063/1.473553

    Article  CAS  Google Scholar 

  41. Izsák R, Neese F (2011) J Chem Phys 135:144105. https://doi.org/10.1063/1.3646921

    Article  CAS  PubMed  Google Scholar 

  42. Martinez TJ, Carter EA (1993) J Chem Phys 98:7081. https://doi.org/10.1063/1.464751

    Article  CAS  Google Scholar 

  43. Schrader DM, Prager S (1962) J Chem Phys 37:1456. https://doi.org/10.1063/1.1733305

    Article  CAS  Google Scholar 

  44. Whitten JL (1973) J Chem Phys 58:4496. https://doi.org/10.1063/1.1679012

    Article  CAS  Google Scholar 

  45. Beebe NHF, Linderberg J (1977) Int J Quantum Chem 12:683. https://doi.org/10.1002/qua.560120408

    Article  CAS  Google Scholar 

  46. Alsenoy CV (1988) J Comput Chem 9:620. https://doi.org/10.1002/jcc.540090607

    Article  Google Scholar 

  47. Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514. https://doi.org/10.1016/0009-2614(93)89151-7

    Article  CAS  Google Scholar 

  48. Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359. https://doi.org/10.1016/0009-2614(93)87156-W

    Article  CAS  Google Scholar 

  49. Weigend F, Häser M (1997) Theor Chem Acc 97:331. https://doi.org/10.1007/s002140050269

    Article  CAS  Google Scholar 

  50. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070. https://doi.org/10.1063/1.451917

    Article  Google Scholar 

  51. Raffenetti RC (1973) J Chem Phys 58:4452. https://doi.org/10.1063/1.1679007

    Article  CAS  Google Scholar 

  52. Almlöf J, Taylor PR (1990) J Chem Phys 92:551. https://doi.org/10.1063/1.458458

    Article  Google Scholar 

  53. Suaud N, Malrieu JP (2017) Mol Phys 115:2684. https://doi.org/10.1080/00268976.2017.1303207

    Article  CAS  Google Scholar 

  54. Dunning TH (1989) J Chem Phys 90:1007. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  55. Woon DE, Dunning TH (1993) J Chem Phys 98:1358. https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  56. Woon DE, Dunning TH (1995) J Chem Phys 103:4572. https://doi.org/10.1063/1.470645

    Article  CAS  Google Scholar 

  57. Peterson KA, Dunning TH (2002) J Chem Phys 117:10548. https://doi.org/10.1063/1.1520138

    Article  CAS  Google Scholar 

  58. Lakin W (1965) J Chem Phys 43:2954. https://doi.org/10.1063/1.1697255

    Article  CAS  Google Scholar 

  59. Hill RN (1985) J Chem Phys 83:1173. https://doi.org/10.1063/1.449481

    Article  CAS  Google Scholar 

  60. Kutzelnigg W (1985) Theor Chim Acta 68:445. https://doi.org/10.1007/BF00527669

    Article  CAS  Google Scholar 

  61. Martin JML (1996) Chem Phys Lett 259:669. https://doi.org/10.1016/0009-2614(96)00898-6

    Article  CAS  Google Scholar 

  62. Martin JML, Taylor PR (1997) J Chem Phys 106:8620. https://doi.org/10.1063/1.473918

    Article  CAS  Google Scholar 

  63. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243. https://doi.org/10.1016/S0009-2614(98)00111-0

    Article  CAS  Google Scholar 

  64. Schwenke DW (2005) J Chem Phys 122:014107. https://doi.org/10.1063/1.1824880

    Article  CAS  Google Scholar 

  65. Varandas AJC (2007) J Chem Phys 126:244105. https://doi.org/10.1063/1.2741259

    Article  CAS  PubMed  Google Scholar 

  66. Hill JG, Peterson KA, Knizia G, Werner HJ (2009) J Chem Phys 131:194105. https://doi.org/10.1063/1.3265857

    Article  CAS  PubMed  Google Scholar 

  67. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  68. Woon DE, Dunning TH (1994) J Chem Phys 100:2975. https://doi.org/10.1063/1.466439

    Article  CAS  Google Scholar 

  69. Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244. https://doi.org/10.1063/1.1367373

    Article  CAS  Google Scholar 

  70. Hashimoto T, Hirao K, Tatewaki H (1997) Chem Phys Lett 273:345. https://doi.org/10.1016/S0009-2614(97)00613-1

    Article  CAS  Google Scholar 

  71. Chong DP (1995) Can J Chem 73:79. https://doi.org/10.1139/v95-011

    Article  CAS  Google Scholar 

  72. Manninen P, Vaara J (2006) J Comput Chem 27:434. https://doi.org/10.1002/jcc.20358

    Article  CAS  PubMed  Google Scholar 

  73. Lehtola S, Manninen P, Hakala M, Hamalainen K (2013) J Chem Phys 138:044109. https://doi.org/10.1063/1.4788635

    Article  CAS  PubMed  Google Scholar 

  74. Delley B (1990) J Chem Phys 92:508. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  75. Jensen F (2001) J Chem Phys 115:9113. https://doi.org/10.1063/1.1413524

    Article  CAS  Google Scholar 

  76. Jensen F (2002) J Chem Phys 117:9234. https://doi.org/10.1063/1.1515484

    Article  CAS  Google Scholar 

  77. Jensen F (2002) J Chem Phys 116:7372. https://doi.org/10.1063/1.1465405

    Article  CAS  Google Scholar 

  78. VandeVondele J, Hutter J (2007) J Chem Phys 127:114105. https://doi.org/10.1063/1.2770708

    Article  CAS  PubMed  Google Scholar 

  79. van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (1999) J Chem Phys 111:3812. https://doi.org/10.1063/1.479684

    Article  Google Scholar 

  80. Boys SF, Bernardi F (1970) Mol Phys 19:553. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  81. Laikov DN (2005) Chem Phys Lett 416:116. https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  82. Adamowicz L, Bartlett RJ (1987) J Chem Phys 86:6314. https://doi.org/10.1063/1.452468

    Article  CAS  Google Scholar 

  83. Dyall KG (1994) J Chem Phys 100:2118. https://doi.org/10.1063/1.466508

    Article  CAS  Google Scholar 

  84. Shamov GA, Schreckenbach G, Vo TN (2007) Chem Eur J 13:4932. https://doi.org/10.1002/chem.200601244

    Article  CAS  PubMed  Google Scholar 

  85. Shamov GA, Schreckenbach G (2006) J Phys Chem A 110:9486. https://doi.org/10.1021/jp063060l

    Article  CAS  PubMed  Google Scholar 

  86. Ustynyuk YA, Gloriozov IP, Kalmykov SN, Mitrofanov AA, Babain VA, Alyapyshev MY, Ustynyuk NA (2014) Solv. Extr. Ion Exch. 32:508. https://doi.org/10.1080/07366299.2014.915666

    Article  CAS  Google Scholar 

  87. Lavrov HV, Ustynyuk NA, Matveev PI, Gloriozov IP, Zhokhov SS, Alyapyshev M, Tkachenko LI, Voronaev IG, Babain V, Kalmykov SN, Ustynyuk YA (2017) Dalton Trans 46:10926. https://doi.org/10.1039/C7DT01009E

    Article  CAS  PubMed  Google Scholar 

  88. Saenko EV, Laikov DN, Baranova IA, Feldman VI (2011) J Chem Phys 135:101103. https://doi.org/10.1063/1.3638690

    Article  CAS  PubMed  Google Scholar 

  89. Handy NC, Marron MT, Silverstone HJ (1969) Phys Rev 180:45. https://doi.org/10.1103/PhysRev.180.45

    Article  CAS  Google Scholar 

  90. Morrell MM, Parr RG, Levy M (1975) J Chem Phys 62:549. https://doi.org/10.1063/1.430509

    Article  CAS  Google Scholar 

  91. Laikov DN (2019) J Chem Phys 150:061103. https://doi.org/10.1063/1.5082231

    Article  CAS  PubMed  Google Scholar 

  92. Aoyama T, Hayakawa M, Kinoshita T, Nio M (2012) Phys Rev Lett 109:111807. https://doi.org/10.1103/PhysRevLett.109.111807

    Article  CAS  PubMed  Google Scholar 

  93. Hanneke D, Hoogerheide SF, Gabrielse G (2011) Phys Rev A 83:052122. https://doi.org/10.1103/PhysRevA.83.052122

    Article  CAS  Google Scholar 

  94. Visscher L, Dyall KG (1997) Atom Data Nucl Data 67:207. https://doi.org/10.1006/adnd.1997.0751

    Article  CAS  Google Scholar 

  95. Meija J, Coplen TB, Berglund M, Brand WA, Bièvre PD, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Pure Appl Chem 88:293. https://doi.org/10.1515/pac-2015-0503

    Article  CAS  Google Scholar 

  96. Grant IP, Mayers DF, Pyper NC (1976) J Phys B At Mol Phys 9:2777. https://doi.org/10.1088/0022-3700/9/16/013

    Article  CAS  Google Scholar 

  97. Wesolowski SS, Valeev EF, King RA, Baranovski V, Schaefer HF (2000) Mol Phys 98:1227. https://doi.org/10.1080/00268970050080582

    Article  CAS  Google Scholar 

  98. http://www.Supplementarymaterial

  99. Sosulin IS, Shiryaeva ES, Tyurin DA, Feldman VI (2017) J Chem Phys 147:131102. https://doi.org/10.1063/1.4999772

    Article  CAS  PubMed  Google Scholar 

  100. Ryazantsev SV, Tyurin DA, Feldman VI (2017) Spectrochim Acta A 187:39. https://doi.org/10.1016/j.saa.2017.06.018

    Article  CAS  Google Scholar 

  101. Ryazantsev SV, Tyurin DA, Feldman VI, Khriachtchev L (2017) J Chem Phys 147:184301. https://doi.org/10.1063/1.5000578

    Article  CAS  PubMed  Google Scholar 

  102. Kameneva SV, Tyurin DA, Feldman VI (2017) Phys Chem Chem Phys 19:24348. https://doi.org/10.1039/c7cp03518g

    Article  CAS  PubMed  Google Scholar 

  103. Kameneva SV, Tyurin DA, Nuzhdin KB, Feldman VI (2016) J Chem Phys 145:214309. https://doi.org/10.1063/1.4969075

    Article  CAS  PubMed  Google Scholar 

  104. Shiryaeva ES, Tyurin DA, Feldman VI (2016) J Phys Chem A 120:7847. https://doi.org/10.1021/acs.jpca.6b07301

    Article  CAS  PubMed  Google Scholar 

  105. Sosulin IS, Shiryaeva ES, Tyurin DA, Feldman VI (2018) J Phys Chem A 122:4042. https://doi.org/10.1021/acs.jpca.8b01485

    Article  CAS  PubMed  Google Scholar 

  106. Sosulin IS, Tyurin DA, Feldman VI (2018) Stuct Chem. https://doi.org/10.1007/s11224-018-1232-z

    Article  Google Scholar 

  107. Laikov DN (2011) J Chem Phys 135:134120. https://doi.org/10.1063/1.3646498

    Article  CAS  PubMed  Google Scholar 

  108. Briling KR (2017) J Chem Phys 147:157101. https://doi.org/10.1063/1.5000525

    Article  CAS  PubMed  Google Scholar 

  109. Korostelev AA (2011) RNA 17:1409. https://doi.org/10.1261/rna.2733411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri N. Laikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (IN 24775 kb)

Supplementary material 2 (IN 26340 kb)

Supplementary material 3 (IN 1568 kb)

Supplementary material 4 (IN 1689 kb)

Supplementary material 5 (IN 75095 kb)

Supplementary material 6 (IN 78322 kb)

Supplementary material 7 (IN 154059 kb)

Supplementary material 8 (IN 160553 kb)

Supplementary material 9 (IN 179541 kb)

Supplementary material 10 (IN 186362 kb)

Supplementary material 11 (IN 250066 kb)

Supplementary material 12 (IN 258834 kb)

Supplementary material 13 (IN 5525 kb)

Supplementary material 14 (IN 5928 kb)

Supplementary material 15 (IN 414615 kb)

Supplementary material 16 (IN 429549 kb)

Supplementary material 17 (IN 14237 kb)

Supplementary material 18 (IN 14908 kb)

Supplementary material 19 (TXT 3 kb)

Supplementary material 20 (DAT 1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laikov, D.N. Atomic basis functions for molecular electronic structure calculations. Theor Chem Acc 138, 40 (2019). https://doi.org/10.1007/s00214-019-2432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2432-3

Keywords

Navigation