Skip to main content
Log in

Direct calculation of the Coulomb matrix: Slater-type orbitals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

It is proved that the evaluation of the Coulomb potential and the calculation of its matrix elements can be carried out in separate steps whose costs formally increase as the square of the number of basis functions. The resulting method for computing the Coulomb matrix is reported, and its main features are tested with a trial program for Slater functions. A comparison of the Coulomb matrices obtained with this method and those computed from the repulsion integrals shows that the current procedure is potentially exact, highly accurate in practice, and much less expensive. The effects of basis product cutoff and long-range separation have been analyzed finding that the method tends to linear scaling with the size of the system. Moreover, the storage requirements are very low since two-electron integrals are completely absent, and it is well suited to be used in the density functional context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rico JF, López R, Ramírez G (1999) J Chem Phys 110(9):4213

    Article  CAS  Google Scholar 

  2. Rico JF, López R, Ema I, Ramírez G (2002) J Chem Phys 117(2):533

    Article  Google Scholar 

  3. Rico JF, López R, Ema I, Ramírez G (2002) J Chem Theory Comput 1:1083

    Article  Google Scholar 

  4. Rico JF, López R, Ema I, Ramírez G (2007) Theor Chem Account 118:709

    Article  Google Scholar 

  5. Rico JF, López R, Alonso JIF (1984) Phys Rev A 29:6

    Article  Google Scholar 

  6. Rico JF, López R, Paniagua M, Alonso JIF (1984) Phys Rev A 29:11

    Article  Google Scholar 

  7. Monkhorst HJ, Harris FE (1969) Chem Phys Lett 3(7):537

    Article  CAS  Google Scholar 

  8. Clementi E (1972) Proc Nat Acad Sci 69(10):2942

    Article  CAS  Google Scholar 

  9. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2(1):41

    Article  CAS  Google Scholar 

  10. Whitten JL (1973) J Chem Phys 58:4496

    Article  CAS  Google Scholar 

  11. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396

    Article  CAS  Google Scholar 

  12. Andzelm J, Wimmer E (1992) J Chem Phys 96(2):1280

    Article  CAS  Google Scholar 

  13. Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213(5–6):514

    Article  CAS  Google Scholar 

  14. Treutler O, Ahlrichs R (1995) J Chem Phys 102(1):346

    Article  CAS  Google Scholar 

  15. Eichkorn K, Treutler O, Öhm H, Haser M, Ahlrichs R (1995) Chem Phys Lett 240(4):283

    Article  CAS  Google Scholar 

  16. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Account 97:119

    CAS  Google Scholar 

  17. Cohen AJ, Handy NC (2002) J Chem Phys 117(4):1470

    Article  CAS  Google Scholar 

  18. Watson MA, Handy NC, Cohen AJ (2003) J Chem Phys 119(13):6475

    Article  CAS  Google Scholar 

  19. Aquilante F, Lindh R, Pedersen TB (2007) J Chem Phys 127:114107

    Article  Google Scholar 

  20. Pedersen TB, Aquilante F, Lindh R (2009) Theor Chem Acc 124:1

    Article  CAS  Google Scholar 

  21. Rico JF, López R, Ema I, Ramírez G, Ludeña E (2004) J Comput Chem 25(11):1355

    Article  CAS  Google Scholar 

  22. Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series and products, 4th edn. Academic Press, New York

    Google Scholar 

  23. Rico JF, López R, Ema I, Ramírez G (2004) J Comput Chem 25(11):1347

    Article  CAS  Google Scholar 

  24. Steinborn EO, Ruedenberg K (1973) Rotation and translation of regular and irregular solid spherical harmonics (Elsevier, 1973). Advances in Quantum Chemistry, vol 7, pp 1–81

  25. Lebedev VI (1976) Dokl Akad Nauk 231(1):32

    Google Scholar 

  26. Lebedev VI, Skorokhodov AL (1992) Dokl Akad Nauk 324(3):519

    Google Scholar 

  27. Lebedev VI (1994) Dokl Akad Nauk 338(4):454

    CAS  Google Scholar 

  28. Lebedev VI, Laikov DN, (1999) Dokl Akad Nauk 366(6):741

    CAS  Google Scholar 

  29. Kakhiani K, Tsereteli K, Tsereteli P (2009) Comput Phys Commun 1806:256

    Article  Google Scholar 

  30. Homeier HHH, Steinborn EO (1991) Int J Quantum Chem 39(4):625

    Article  CAS  Google Scholar 

  31. Homeier HHH, Steinborn EO (1992) Int J Quantum Chem 41(4):399

    Article  CAS  Google Scholar 

  32. Ema I, García de la Vega JM, Ramírez G, López R, Rico JF, Meissner J, J Paldus (2003) J Comput Chem 24(7):859

    Article  CAS  Google Scholar 

  33. Rico JF, López R, Ema I, Ramírez G (2004) J Comput Chem 25(16):1987

    Article  CAS  Google Scholar 

  34. Strain MC, Scuseria GE, Frisch MJ (1996) Science 271:51

    Article  CAS  Google Scholar 

  35. White CA, Johnson BG, Gill PM, Head-Gordon M (1994) Chem Phys Lett 230:8

    Article  CAS  Google Scholar 

  36. Challacombe M, Schwegler E, Almlof J (1996) J Chem Phys 104:4685

    Article  CAS  Google Scholar 

  37. Beebe N, Linderberg J (1977) Int J Quantum Chem 12:683

    Article  CAS  Google Scholar 

  38. Mamby FR, Knowles P (2001) Phys Rev Lett 87:163001

    Article  Google Scholar 

  39. Mamby F, Knowles P, Lloyd A (2001) J Chem Phys 115:9144

    Article  Google Scholar 

  40. Polly R, Werner H, Mamby F, Knowles P (2004) Mol Phys 102(21–22):2311

    Article  CAS  Google Scholar 

  41. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118(20):9136

    Article  CAS  Google Scholar 

  42. Weigend F, Kattannek M, Ahlrichs R (2009) J Chem Phys 130:164106

    Article  Google Scholar 

  43. Weigend F (2006) Phys Chem Chem Phys 8:1057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael López.

Additional information

Dirección General de Investigación Científica y Técnica (CTQ2007-63332).

Appendix

Appendix

Let ρA(r A ) and ρC(r C ) be two charge distributions fully enclosed by two spheres centered at R A and R C and with radii R A and R B, and let R AC ≡| R C  − R A | ≥R A + R C. Its electrostatic interaction energy, E AC, can be obtained by combining the bipolar expansion of |r − r′|−1:

$$ \begin{aligned} {\frac{1} {| {\bf r} - {\bf r}'|}} & =\sum_{l=0}^\infty \sum_{m=-l}^l (2 - \delta_{m0}) \, {\frac{(l-|m|)!} {(l+|m|)!}} \, z_{l}^{m}({\bf r}_A) \, \sum_{L=0}^\infty \sum_{M=-L}^L (2 - \delta_{M0}) \, {\frac{(L-|M|)!} {(L+|M|)!}}\\ & \times z_{L}^{M}({\bf r}'_C) \, {\frac{\sqrt{\pi} \, (l+L-1/2)!} {(l-1/2)! \, (L-1/2)!}} \, \sum_{m'} \alpha_{l+L, m'}^{lm LM} \, {\frac{z_{l+L}^{m'}({\bf R}_{AC})} {R_{AC}^{2l+2L+1}}} \end{aligned} $$
(42)

with the expansions in spherical harmonics of ρA(r A ) and ρC(r C ). This gives:

$$ \begin{aligned} E^{AC} & = \sum_{l=0}^\infty \sum_{m=-l}^l Q_{lm}^A \sum_{L=0}^\infty \sum_{M=-L}^L Q_{LM}^C\\ & \times {\frac{\sqrt{\pi} \, (l+L-1/2)!} {(l-1/2)! \, (L-1/2)!}} \, \sum_{m'} \alpha_{l+L, m'}^{lm LM} \, {\frac{z_{l+L}^{m'}({\bf R}_{AC})} {R_{AC}^{2l+2L+1}}} \end{aligned} $$
(43)

where α lmLMl+L, m' are the coefficients for the decomposition of products of spherical harmonics into spherical harmonics. The sum on m′, determined by \(\alpha_{l+L, m'}^{lm LM}\), contains two terms at most, and \(Q_{lm}^A\) and \(Q_{LM}^C\) are the multipolar moments related to the radial factors by:

$$ Q_{lm}^A = {\frac{4 \pi} {2l + 1}} \, \int\limits_0^{R^A} {\rm d}r \, r^{2l+2} \, f_{lm}^A(r) $$
(44)

with a likewise expression for \(Q_{LM}^C\).

In practice, the ρA(r A ) fragments extend to infinite but, since the radial factors have a quick decay (at least, exponential) one can estimate—for a fixed threshold—the size of the sphere that encloses the nonnegligible part of ρA(r A ). In a previous work [3], we showed that the ρA(r A ) given by DAM looks very much like the densities of the corresponding isolated atom, so that a conservative criterion would be to take for atoms in molecules the size of the spheres of the isolated atoms. This point has been tested and verified finding that a radius between 5 and 6 bohr should give sufficient accuracy but, for prudential reasons, we take 6.5 bohr in this trial program.

Once this radius is fixed, C is considered as a neighbor of A if their spheres intersect each other (R AC <  13 bohr), and nonneighbor (or far away from A) otherwise. Notice that the set of atoms placed far away from A generates a constant potential region where ρA(r A ) is nonnegligible. This is the \(B_{lm}^A\) constant appearing in Eqs. 2326 which, according to Eq. 43 reads:

$$ B_{lm}^A = \sqrt{\pi} \, \sum_{L=0}^{L_{\rm max}} {\frac{(-1)^L \, (L+l-1/2)!} { (L-1/2)! \, (l-1/2)!}} \, \sum_{M=-L}^L \sum_{m'} c_{L+l m'}^{LM \, l m} \, \sum_C Q_{LM}^C\,{\frac{z_{L+l}^{m'}({\bf R}_{AC})} {R_{AC}^{2L+2l+1}}} $$
(45)

where L max is the order of the highest atomic multipolar moment considered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ema, I., López, R., Ramírez, G. et al. Direct calculation of the Coulomb matrix: Slater-type orbitals. Theor Chem Acc 128, 115–125 (2011). https://doi.org/10.1007/s00214-010-0771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0771-1

Keywords

Navigation