Skip to main content

Advertisement

Log in

Finite element approximation of large bending isometries

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A finite element scheme for the approximation of large isometric deformations with minimal bending energy is devised and analyzed. The convergence to a stationary point and energy decreasing property of an iterative algorithm for the numerical solution of the scheme is proved. Numerical experiments illustrate the performance of the iteration and show that the discretization leads to accurate approximations for large vertical loads and compressive boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Bartels, S., Feng, X., Prohl, A.: A convergent and constraint-preserving finite element method for the \(p\)-harmonic flow into spheres. SIAM J. Numer. Anal. 45(3), 905–927 (2007). (electronic)

    Google Scholar 

  4. Barrett, J.W., Garcke, H., Nürnberg, R.: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comput. 29(3), 1006–1041 (2007). (electronic)

    Google Scholar 

  5. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31(1), 225–253 (2008)

    Google Scholar 

  6. Bartels, S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43(1), 220–238 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels, S.: Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM J. Numer. Anal. (2013) (accepted)

  8. Bonito, A., Nochetto, R.H., Pauletti, M.S.: Parametric FEM for geometric biomembranes. J. Comput. Phys. 229(9), 3171–3188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Series in Computational Mathematics, vol. 15. Springer, New York (1991)

  11. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21(5), 427–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18(3), 1249–1267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111(1), 55–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elliott, C.M., Stinner, B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friesecke, G., James, R.D., Müller, S.: The Föppl–von Kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. C. R. Math. Acad. Sci. Paris 335(2), 201–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hornung, P.: Approximation of flat \(W^{2,2}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hornung, P.: Euler–Lagrange equation and regularity for flat minimizers of the Willmore functional. Comm. Pure Appl. Math. 64(3), 367–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hornung, P.: Fine level set structure of flat isometric immersions. Arch. Ration. Mech. Anal. 199(3), 943–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hornung, P.: Personal communication (2012)

  25. Kirchhoff, G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Article  MATH  Google Scholar 

  26. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24(8–9), 499–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Willmore, T.J.: Total curvature in Riemannian geometry. In: Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd, Chichester (1982)

Download references

Acknowledgments

The author acknowledges support by the DFG through the Collaborative Research Center (SFB) 611 Singular Phenomena and Scaling in Mathematical Models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Bartels.

Appendix A: Auxiliary results

Appendix A: Auxiliary results

1.1 A.1 Elementary differential geometry

Given a parametrized surface \(y:\Omega \rightarrow \mathbb{R }^3\) the first fundamental form is given by \(g_{ij} = \partial _i y \cdot \partial _j y\) and the second fundamental form by \(h_{ij} = \partial _i b \cdot \partial _j y = - b \cdot \partial _i \partial _j y\), where \(b= \partial _1 y\times \partial _2 y\). The inverse of \(g\) has the entries \(g^{ij}\). The Gaussian curvature is the determinant of the Weingarten map \(L= (\sum _k h_{ik}g^{kj})\) and given by \(K = \det h_{ij}/ \det g_{ij}\). The mean curvature is half of the trace of \(L\) and given by \(H=(h_{11}g_{22}-2h_{12}g_{12}+h_{22}g_{11}) /(2\det g_{ij})\). If the parametrization is an isometry, i.e., if \(g_{ij}= \delta _{ij}\), then Gauss’s theorema egregium implies \(K=0\). Moreover, we have \(\text{ tr}II = \text{ tr}L = 2 H \) and

$$\begin{aligned} |II|^2&= \sum _{i, j} h_{ij}^2 = h_{11}^2 + h_{22}^2 + 2 h_{12}^2 = (h_{11}+h_{22})^2 - 2 h_{11}h_{22}+ 2 h_{12}^2\\&= 4 H^2 - 2 K = 4H^2. \end{aligned}$$

For a \(C^2\) isometry with \(|\partial _j y|^2 =1\), \(j=1,2\), and \(\partial _1 y \cdot \partial _2 y = 0\) we deduce that \(\partial _1^2 y \cdot \partial _1 y = 0\) and \(\partial _1^2 y \cdot \partial _2 y = - \partial _1 y \cdot \partial _1\partial _2 y = 0\). Analogously, we verify that \(\partial _2^2 y \cdot \partial _1 y=-\partial _2 y\cdot \partial _1\partial _2y =0\) and \(\partial _2^2 y \cdot \partial _2 y = 0\) so that \(-\Delta y = \beta b\). Since \(-\Delta y \cdot b = \text{ tr}II = 2H\) we verify that \(-\Delta y = 2 H b\). The vectors \((\partial _1y, \partial _2y, b)\) form an orthonormal basis of \(\mathbb{R }^3\) for every \(x\in \Omega \) so that \(|\partial _i\partial _j y| = |\partial _i\partial _j y\cdot b|\) and hence \(|D^2y|^2=\sum _{i, j} |\partial _i\partial _j y \cdot b|^2=|II|^2\).

1.2 A.2 Proof of (2.3)

Given a weakly acute triangulation \(\mathcal T _h\) we have for the entries \(k_{zy} = (\nabla \varphi _z, \nabla \varphi _y)\) of the stiffness matrix that \(k_{zy}\le 0\) if \(z\ne y\) for all \(z, y\in \mathcal N _h\). The symmetry \(k_{zy}=k_{yz}\) and the identity \(\sum _{y\in \mathcal N _h} k_{zy}=0\) for all \(z\in \mathcal N _h\) show

$$\begin{aligned} \Vert \nabla v_h\Vert ^2&= \frac{1}{2} \sum _{z, y\in \mathcal N _h} k_{zy} v_h(z)\cdot (v_h(y)\!-v_h(z)) \!+ \frac{1}{2} \sum _{z, y\in \mathcal N _h} k_{zy} v_h(y)\cdot (v_h(z)-v_h(y)) \\&= -\frac{1}{2} \sum _{z, y\in \mathcal N _h} k_{zy} |v_h(z)-v_h(y)|^2. \end{aligned}$$

The assertion follows from the fact that the mapping \(x\mapsto x/|x|\) is Lipschitz continuous with constant \(1\) in \(\{x\in \mathbb{R }^3: |x|\ge 1\}\).

1.3 A.3 Proof of Lemma 2.1

A discrete Poincaré inequality shows that \(\Vert y_h\Vert \le C\) and hence there exists \(y\in L^2(\Omega ;\,\mathbb{R }^3)\) with (after extraction of a subsequence) \(y_h\rightharpoonup y\) in \(L^2\). Since \(\Vert \nabla _h y_h\Vert \le C\) there exists \(\xi \in L^2(\Omega ;\,\mathbb{R }^{3\times 2})\) such that (after extraction of another subsequence) \(\nabla _h y_h \rightharpoonup \xi \) in \(L^2\). We have, using that \(\int _E [y_h]\text{ d}s=0\) for all \(E\in \mathcal E _h\) and that the (row-wise applied) Fortin interpolant \(I_F \Psi \) of \(\Psi \in C^\infty _0(\Omega ;\,\mathbb{R }^{3\times 2})\) on the Raviart–Thomas finite element space, cf. [10], satisfies that \((I_F \Psi ) \nu |_E\) is constant on each \(E\in \mathcal E _h\), that

$$\begin{aligned} \int \limits _\Omega \nabla _h y_h : \Psi \text{ d}x&= -\int \limits _\Omega y_h \cdot \text{ div}\Psi \text{ d}x + \sum _{E\in \mathcal E _h} \int \limits _E [y_h] \cdot ([\Psi -I_F\Psi ] \nu )\text{ d}s \\&= \!-\!\int \limits _\Omega y_h \cdot \text{ div}\Psi \text{ d}x \!+\!\int \limits _\Omega \nabla _h y_h : [\Psi -I_F\Psi ] \text{ d}x \!+\!\int \limits _\Omega y_h \cdot \text{ div}[\Psi -I_F\Psi ] \text{ d}x. \end{aligned}$$

Since the last two terms on the right-hand side converge to zero as \(h\rightarrow 0\) we deduce that \(\xi = \nabla y\). The fact that \(y|_{{\Gamma _\mathrm{D}}}=y_\mathrm{D}\) follows from an elementwise integration by parts as above provided that \(y_h \rightarrow y\) in \(L^2({\Gamma _\mathrm{D}})\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, S. Finite element approximation of large bending isometries. Numer. Math. 124, 415–440 (2013). https://doi.org/10.1007/s00211-013-0519-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0519-7

Mathematics Subject Classification (1991)

Navigation