Skip to main content
Log in

Computational parametric Willmore flow

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a new algorithm for the computation of Willmore flow. This is the L 2-gradient flow for the Willmore functional, which is the classical bending energy of a surface. Willmore flow is described by a highly nonlinear system of PDEs of fourth order for the parametrization of the surface. The spatially discrete numerical scheme is stable and consistent. The discretization relies on an adequate calculation of the first variation of the Willmore functional together with a derivation of the second variation of the area functional which is well adapted to discretization techniques with finite elements. The algorithm uses finite elements on surfaces. We give numerical examples and tests for piecewise linear finite elements. A convergence proof for the full algorithm remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett J.W., Garcke H., Nürnberg R.: A parametric finite element method for fourth order geometric evolution equations. J. Comp. Phys. 222, 441–467 (2007)

    Article  MATH  Google Scholar 

  2. Bobenko A., Schroeder P.: Discrete Willmore flow, SIGGRAPH ’05: ACM SIGGRAPH 2005 (Courses). ACM Press, New York (2005)

    Book  Google Scholar 

  3. Clarenz U., Diewald U., Dziuk G., Rumpf M., Rusu R.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geometr. Des. 21, 427–445 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Deckelnick K., Dziuk G.: Error analysis for the Willmore flow of graphs. Interfaces Free Boundaries 8, 21–46 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 139–232 (2005)

  6. Diewald, U.: Anisotrope Krümmungsflüsse parametrischer Flächen sowie deren Anwendung in der Flächenverarbeitung, Dissertation University Duisburg-Essen (2005)

  7. Droske M., Rumpf M.: A level set formulation for Willmore flow. Interfaces Free Boundaries 6, 361–378 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Du Q., Liu C., Wang X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comp. Phys. 212, 757–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dziuk G.: Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differ. Equ. Calculus Var. Lect. Notes Math. 1357, 142–155 (1988)

    Article  MathSciNet  Google Scholar 

  10. Dziuk G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dziuk G., Kuwert E., Schätzle R.: Evolution of elastic curves in \({{\mathbb R}^n}\): existence and computation. SIAM J. Math. Anal. 33, 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dziuk G., Elliott C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2006)

    Article  MathSciNet  Google Scholar 

  13. Feng X., Prohl A.: Analysis of gradient flow of a regularized Mumford–Shah functional for image segmentation and image inpainting. Math. Model. Numer. Anal. 38, 291–320 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Francis G., Sullivan J.M., Kusner R.B., Brakke K.A., Hartman C., Chappell G.: The minimax sphere eversion. In: Hege, H.-C., Polthier, K. (eds) Visualization and Mathematics, pp. 3–20. Springer, Heidelberg (1997)

    Google Scholar 

  15. Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg (1998)

    Google Scholar 

  16. Kuwert E., Schätzle R.: The Willmore flow with small initial energy. J. Differ. Geom. 57, 409–441 (2001)

    MATH  Google Scholar 

  17. Kuwert E., Schätzle R.: Removability of point singularities of Willmore surfaces. Ann. Math. 159, 1–43 (2004)

    Article  Google Scholar 

  18. Mayer U.F., Simonett G.: A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow. Interfaces Free Boundaries 4, 89–109 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Rusu R.: An algorithm for the elastic flow of surfaces. Interfaces Free Boundaries 7, 229–239 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Simonett G.: The Willmore flow near spheres. Differ. Integral Equ. 14, 1005–1014 (2005)

    MathSciNet  Google Scholar 

  21. Willmore, T.J.: Riemannian Geometry. Oxford (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Dziuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziuk, G. Computational parametric Willmore flow. Numer. Math. 111, 55–80 (2008). https://doi.org/10.1007/s00211-008-0179-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0179-1

Mathematics Subject Classification (2000)

Navigation