Skip to main content

Advertisement

Log in

Confining Thin Elastic Sheets and Folding Paper

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Crumpling a sheet of paper leads to the formation of complex folding patterns over several length scales. This can be understood on the basis of the interplay of a nonconvex elastic energy, which favors locally isometric deformations, and a small singular perturbation, which penalizes high curvature. Based on three-dimensional nonlinear elasticity and by using a combination of explicit constructions and general results from differential geometry, we prove that, in agreement with previous heuristic results in the physics literature, the total energy per unit thickness of such folding patterns scales at most as the thickness of the sheet to the power 5/3. For the case of a single fold we also obtain a corresponding lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Belgacem H., Conti S., DeSimone A., Müller S. (2002). Energy scaling of compressed elastic films. Arch. Rat. Mech. Anal. 164: 1–37

    Article  MATH  Google Scholar 

  2. Cerda E., Chaieb S., Melo F., Mahadevan L. (1999). Conical dislocations in crumpling. Nature 401: 46–49

    Article  ADS  Google Scholar 

  3. Chen X., Hutchinson J.W. (2004). Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71: 597–603

    Article  MATH  Google Scholar 

  4. Conti S., Maggi F., Müller S. (2006). Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. SIAM J. Math. Anal. 38: 657–680

    Article  MathSciNet  Google Scholar 

  5. DiDonna B.A., Witten T.A. (2001). Anomalous strength of membranes with elastic ridges. Phys. Rev. Lett. 87: 206105.1–206105.4

    Article  ADS  Google Scholar 

  6. DoCarmo M.P. (1976). Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  7. Eliashberg, Y., Mishachev, N.: Introduction to the h-principle. Graduate studies in Mathematics, no. 48, American Mathematical Society, Providence, 2002

  8. Friesecke G., James R., Müller S. (2002). A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math 55: 1461–1506

    Article  MATH  Google Scholar 

  9. Friesecke G., James R., Müller S. (2006). A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180: 183–236

    Article  MATH  MathSciNet  Google Scholar 

  10. Hartman P., Nirenberg L. (1959). On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81: 901–920

    Article  MATH  MathSciNet  Google Scholar 

  11. Horák J., Lord G.J., Peletier M.A. (2006). Cylinder buckling: the mountain pass as an organizing center. SIAM J. Appl. Math. 66: 1793–1824 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  12. Houle P.A., Sethna J.P. (1996). Acoustic emission from crumpling paper. Phys. Rev. E 54: 278–283

    Article  ADS  Google Scholar 

  13. Kirchheim, B.: Rigidity and geometry of microstructures, MPI-MIS Lecture notes no. 16, 2002

  14. Kramer E.M. (1997). The von Kármán equations, the stress function, and elastic ridges in high dimensions. J. Math. Phys. 38: 830–846

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Kramer E.M., Witten T.A. (1997). Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78: 1303–1306

    Article  ADS  Google Scholar 

  16. Kuiper N. (1955). On C 1 isometric imbeddings I. Proc. Kon. Acad. Wet. Amsterdam A 58: 545–556

    MathSciNet  Google Scholar 

  17. Kuiper N. (1955). On C 1 isometric imbeddings II. Proc. Kon. Acad. Wet. Amsterdam A 58: 683–689

    Google Scholar 

  18. LeDret H., Raoult A. (1995). The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73: 549–578

    MathSciNet  Google Scholar 

  19. Lobkovsky A.E. (1996). Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53: 3750–3759

    Article  ADS  MathSciNet  Google Scholar 

  20. Lobkovsky A.E., Gentges S., Li H., Morse D., Witten T.A. (1995). Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270: 1482–1485

    Article  ADS  Google Scholar 

  21. Massey W.S. (1962). Surfaces of Gaussian curvature zero in Euclidean 3-space. Tôhoku Math. J. 14(2): 73–79

    MATH  MathSciNet  Google Scholar 

  22. Müller S., Pakzad M.R. (2005). Regularity properties of isometric immersions. Math. Z. 251: 313–331

    Article  MATH  MathSciNet  Google Scholar 

  23. Nash J. (1954). C 1 isometric imbeddings. Ann. Math. 60: 383–396

    Article  MathSciNet  Google Scholar 

  24. Pakzad M.R. (2004). On the Sobolev space of isometric immersions. J. Diff. Geom. 66: 47–69

    MATH  MathSciNet  Google Scholar 

  25. Pogorelov A.V.: Surfaces of bounded outer curvature. Izdat. Har′kov. Gos. Univ., Kharkov, 1956 (Russian)

  26. Pogorelov, A.V.: Extrinsic geometry of convex surfaces, vol. 35. American Mathematical Society, Providence, Translations of Mathematical Monographs, 1973

  27. Venkataramani, S.C.: The energy of crumpled sheets in Föppl-von Kármán plate theory, preprint, 2003

  28. Venkataramani S.C. (2004). Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17: 301–312

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Venkataramani S.C., Witten T.A., Kramer E.M., Geroch R.P. (2000). Limitations on the smooth confinement of an unstretchable manifold. J. Math. Phys. 41: 5107–5128

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Conti.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Maggi, F. Confining Thin Elastic Sheets and Folding Paper. Arch Rational Mech Anal 187, 1–48 (2008). https://doi.org/10.1007/s00205-007-0076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0076-2

Keywords

Navigation