Skip to main content
Log in

A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive a hierarchy of plate models from three-dimensional nonlinear elasticity by Γ-convergence. What distinguishes the different limit models is the scaling of the elastic energy per unit volume ∼h β, where h is the thickness of the plate. This is in turn related to the strength of the applied force ∼h α. Membrane theory, derived earlier by Le Dret and Raoult, corresponds to α=β=0, nonlinear bending theory to α=β=2, von Kármán theory to α=3, β=4 and linearized vK theory to α>3. Intermediate values of α lead to certain theories with constraints. A key ingredient in the proof is a generalization to higher derivatives of our rigidity result [29] which states that for maps v:(0,1)3→ℝ3, the L 2 distance of ∇v from a single rotation is bounded by a multiple of the L 2 distance from the set SO(3) of all rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elasticity 25, 137–148 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Antman, S.S.: Nonlinear problems of elasticity. Springer, New York, 1995

  3. Anzelotti, G., Baldo, S., Percivale, D.: Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity. Asymptotic Anal. 9, 61–100 (1994)

    MathSciNet  Google Scholar 

  4. Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91, 086105 (2003)

    Article  ADS  Google Scholar 

  5. Ben Amar, M., Pomeau, Y.: Crumpled paper. Proc. Royal Soc. Lond. A 453, 729–755 (1997)

    Article  ADS  MATH  Google Scholar 

  6. Ben Belgacem, H.: Une méthode de Γ-convergence pour un modèle de membrane non linéaire. (French) [A Γ-convergence method for a nonlinear membrane model] C. R. Acad. Sci. Paris Sér. I 324, 845–849 (1997)

    MATH  ADS  Google Scholar 

  7. Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661–685 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films – three-dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164, 1–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis Vol. I. American Math. Soc., 2000

  10. Bhattacharya, K., James, R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47, 531–576 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Braides, A., Truskinosky, L.: In preparation

  12. Casarino, V., Percivale, D.: A variational model for nonlinear elastic plates. J. Convex Anal. 3, 221–243 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Cerda, E., Chaieb, S., Melo, F., Mahadevan, L.: Conical dislocations in crumpling. Nature 401, 46–49 (1999)

    Article  ADS  Google Scholar 

  14. Chaudhuri, N., Müller, S.: Rigidity estimate for two incompatible wells. Calc. Var. 19, 379–390 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chaudhuri, N., Müller, S.: Scaling of the energy for thin martensitic films. Preprint MPI-MIS 59/2004

  16. Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73, 349–389 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ciarlet, P.G.: Mathematical elasticity II – theory of plates. Elsevier, Amsterdam, 1997

  18. Conti, S.: Low energy deformations of thin elastic plates: isometric embeddings and branching patterns. Habilitation thesis, the University of Leipzig, 2003

  19. Conti, S., Maggi, F.: In preparation

  20. Conti, S., Maggi, F., Müller, S.: Preprint MPI-MI 54/2005

  21. Dal Maso, G.: An introduction to Γ-convergence. Birkhäuser, 1993

  22. DeGiorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)

    MathSciNet  Google Scholar 

  23. DiDonna, B.A., Venkataramani, S.C., Witten, T.A., Kramer, E.M.: Singularities, structures and scaling in deformed elastic m-sheets. Phys. Rev. E 65, 016603 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Dolzmann, G., Müller, S.: Microstructure with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132, 101–141 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Föppl, A.: Vorlesungen über technische Mechanik 5. Leipzig, pp. 132–139, 1907

  26. Fonseca, I., Gangbo, W.: Degree theory in analysis and applications. Oxford Univ. Press, 1995

  27. Fox, D.D., Raoult, A., Simo, J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124, 157–199 (1993)

    Article  MATH  Google Scholar 

  28. Friesecke, G., James, R.D., Müller, S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris. Sér. I 334, 173–178 (2002)

    MATH  MathSciNet  Google Scholar 

  29. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Friesecke, G., James, R.D., Müller, S.: The Föppl von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. C. R. Acad. Sci. Paris. Sér. I 335, 201–206 (2002)

    MATH  MathSciNet  Google Scholar 

  31. Friesecke, G., James, R.D., Müller, S., Mora, M.G.: Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris. Sér. I 336, 697–702 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Friesecke, G., James, R.D., Müller, S.: Rigidity of maps close to SO(n) and equiintegrability. In preparation

  33. Friesecke, G., James, R.D., Müller, S.: Stability of slender bodies under compression and validity of the von Kármán theory. In preparation.

  34. Geymonat, G., Suquet, P.: Functional spaces for Norton-Hoff materials. Math. Methods Appl. Sci. 8, 206–222 (1986)

    MATH  MathSciNet  ADS  Google Scholar 

  35. Gioia, G., Ortiz, M.: Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997)

    Article  MATH  Google Scholar 

  36. Hartmann, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Amer. J. Math. 81, 901–920 (1959)

    MathSciNet  Google Scholar 

  37. Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. Amer. Math. Soc. 118, 181–188 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jin, W.M., Sternberg, P.: Energy estimates for the von Kármán model of thin film blistering. J. Math. Phys. 42, 192–199 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. John, F.: Rotation and strain. Comm. Pure Appl. Math. 14, 391–413 (1961)

    MATH  MathSciNet  Google Scholar 

  40. John, F.: Bounds for deformations in terms of average strains. In: Inequalities III O. Shisha (ed.), pp. 129–144, 1972

  41. Kirchheim, B.: Geometry and rigidity of microstructures. Habilitation thesis, University of Leipzig, 2001 (see also: MPI-MIS Lecture Notes. 16/ 2003 http://www.mis.mpg.de/preprints/ln/index.html)

  42. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    MATH  Google Scholar 

  43. von Kármán, T.: Festigkeitsprobleme im Maschinenbau in Encyclopädie der Mathematischen Wissenschaften vol. IV/4, Leipzig, 1910, pp. 311–385

  44. Le Dret, H., Meunier, N.: Heterogeneous wires made of martensitic material. C.R. Acad. Sci. Paris Sér. I 337, 143–147 (2003)

    MATH  Google Scholar 

  45. Le Dret, H., Raoult, A.: Le modéle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle. C. R. Acad. Sci. Paris Sér. I 317, 221–226 (1993)

    MATH  Google Scholar 

  46. Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578 (1995)

    ADS  Google Scholar 

  47. Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Liu, F.-C.: A Lusin property of Sobolev functions. Indiana U. Math. J. 26, 645–651 (1977)

    Article  MATH  Google Scholar 

  49. Lobkovsky, A.E.: Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53, 3750–3759 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  50. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th Edition. Cambridge University Press, Cambridge, 1927

  51. Marigo, J.J., Ghidouche, H., Sedkaoui, Z.: Des poutres flexibles aux fils extensibles: une hiérachie de modèles asymptotiques. C. R. Acad. Sci. Paris Sér. IIb 326, 79–84 (1998)

    MATH  ADS  Google Scholar 

  52. Morgenstern, D.: Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätztheorie. Arch. Ration. Mech. Anal. 4, 145–152 (1959)

    MATH  MathSciNet  Google Scholar 

  53. Morrey, C.B.: Multiple integrals in the calculus of variations. Springer, 1966

  54. Monneau, R.: Justification of nonlinear Kirchhoff-Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169, 1–34 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Mora, M.G., Müller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Parial Differential Equations 18, 287–305 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Analyse non linéaire 21, 271–299 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mora, M.G., Müller, S.: Derivation of a rod theory for phase-transforming materials. Preprint MPI-MIS 40/2005

  58. Müller, S., Pakzad, M.R.: Regularity properties of isometric immersions. Preprint MPI-MIS 4/ 2004. To appear in Math. Z.

  59. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differential Geom. 66, 47–69 (2004)

    MATH  MathSciNet  Google Scholar 

  60. Pantz, O.: Une justification partielle du modèle de plaque en flexion par Γ-convergence. C. R. Acad. Sci. Paris Sér. I 332, 587–592 (2001)

    MATH  MathSciNet  ADS  Google Scholar 

  61. Pantz, O.: On the justification of the nonlinear inextensional plate model. Arch. Ration. Mech. Anal. 167, 179–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. Pantz, O.: Personal communication

  63. Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36, 85–99 (1986)

    MATH  MathSciNet  Google Scholar 

  64. Pipkin, A.C.: Continuously distributed wrinkles in fabrics. Arch. Ration. Mech. Anal. 95, 93–115 (1986)

    MATH  MathSciNet  Google Scholar 

  65. Pogorelov, A.V.: Surfaces with bounded extrinsic curvature (Russian). Kharhov, 1956

  66. Pogorelov, A.V.: Extrinsic geometry of convex surfaces. In : Translation of mathematical monographs vol. 35. American Math. Soc., 1973

  67. Raoult, A.: Personal communication

  68. Reissner, E.: On tension field theory. Proc. 5th Internat. Congr. Appl. Mech., 88–92 (1938) (reprinted in [69])

  69. Reissner, E.: Selected works in applied mechanics and mathematics. Jones and Bartlett Publ., London, pp. 134–146, 1996

  70. Reshetnyak, Y.G.: Liouville's theory on conformal mappings under minimial regularity assumptions. Siberian Math. J. 8, 69–85 (1967) (Sibirskii Mat. Zh. 8, 91–114 (1967))

    Article  MATH  Google Scholar 

  71. Sharon, E., Roman, B., Marder, M., Shin, G.S., Swinney, H.L.: Mechanics: Buckling cascades in free sheets - Wavy leaves may not depend only on their genes to make their edges crinkle. Nature 419, 579 (2002)

    Article  ADS  Google Scholar 

  72. Shu, Y.C.: Heteregeneous thin films of martensitic materials. Arch. Ration. Mech. Anal. 153, 39–90 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  73. Šverák, V.: Regulartiy properties of deformations with finite energy. Arch. Ration. Mech. Anal. 100, 105–127 (1988)

    Article  MATH  Google Scholar 

  74. Truesdell, C.: Comments on rational continuum mechanics, Three lectures for the international Symposium on Continuum Mechanics and Partial Differential Equations, Instituto de Matemática, University Federal do Rio de Janeiro, August 1-5, 1977, pp. 495–603 of Contemporary developments in continuum mechanics and partial differential equations ed. G.M. LaPenha and L.E. Medeiros, North-Holland, Amsterdam, 1978

  75. Venkataramani, S.: Lower bounds for the energy in a crumpled sheet - A minimal ridge. Nonlinearity 17, 301–312 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Villaggio, P.: Mathematical models for elastic structures. Cambridge Univ. Press, 1997

  77. Vodopyanov, S.K., Goldstein, V.M.: Quasiconformal mappings and spaces with generalized first derivatives. Siberian Math. J. 17, 399–411 (1976) (Sibirskii Mat. Zh. 17, 515–531 (1976))

    Article  Google Scholar 

  78. Wagner, H.: Ebene Blechwandträger mit sehr dünnem Steigblech. Z. Flugtechnik u. Motorluftschiffahrt 20, 200–207, 227–233, 256–262, 279–284, 306–314 (1929)

    Google Scholar 

  79. Ziemer, W.: Weakly Differentiable Functions. Springer-Verlag, New York, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gero Friesecke.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friesecke, G., James, R. & Müller, S. A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence. Arch. Rational Mech. Anal. 180, 183–236 (2006). https://doi.org/10.1007/s00205-005-0400-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0400-7

Keywords

Navigation