Skip to main content
Log in

Auslander–Reiten quiver and representation theories related to KLR-type Schur–Weyl duality

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce new partial orders on the sequence positive roots and study the statistics of the poset by using Auslander–Reiten quivers for finite type ADE. Then we can prove that the statistics provide interesting information on the representation theories of KLR-algebras, quantum groups and quantum affine algebras including Dorey’s rule, bases theory for quantum groups, and denominator formulas between fundamental representations. As applications, we prove Dorey’s rule for quantum affine algebras \(U_q(E_{6,7,8}^{(1)})\) and partial information of denominator formulas for \(U_q(E_{6,7,8}^{(1)})\). We also suggest conjecture on complete denominator formulas for \(U_q(E_{6,7,8}^{(1)})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that a cover of x in a poset P with partial order \(\prec \) is an element \(y \in P\) such that \(x \prec y\) and there does not exists \(y' \in P\) such that \(x \prec y' \prec y\).

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33, 839–867 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslander, M., Reiten, I., Smalo, S.: Representation Theory of Artin Algebras, vol. 36. Cambridge studies in advanced mathematics, Cambridge (1995)

    Book  MATH  Google Scholar 

  3. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 1. London Math. Soc. Student Texts 65, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Bedard, R.: On commutation classes of reduced words in Weyl groups. Eur. J. Combin. 20, 483–505 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitres IV–VI. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, (1968)

  6. Brundan, J., Kleshchev, A., McNamara, P.J.: Homological properties of finite Khovanov–Lauda–Rouquier algebras. Duke Math. J. 163, 1353–1404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 2002(7), 357–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chari, V., Pressley, A.: Yangians, integrable quantum systems and Dorey’s rule. Comm. Math. Phys. 181(2), 265–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}\_n\). Int. J. Mod. Phys. A 9(3), 399–417 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frenkel, E., Hernandez, D.: Baxters relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernandez, D.: Kirillov–Reshetikhin conjecture: the general case. Int. Math. Res. Not. 7, 149–193 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Hernandez, D.: Simple tensor products. Invent. Math. 181, 649–675 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Kac, V.: Infinite dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  15. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II. Duke Math. J. 164(8), 1549–1602 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.: Simplicity of heads and socles of tensor products. Compos. Math. 151(2), 377–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang, S.-J., Kashiwara, M., Kim, M., Oh, S.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV. Selecta Math. 22(4), 1987–2015 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kashiwara, M.: On level zero representations of quantum affine algebras. Duke. Math. J. 112, 117–175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato, S.: Poincaré–Birkhoff–Witt bases and Khovanov-Lauda-Rouquier algebras. Duke Math. J. 163(3), 619–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363(5), 2685–2700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kleshchev, A., Ram, A.: Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words. Math. Ann. 349(4), 943–975 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leclerc, B.: Imaginary vectors in the dual canonical basis of \(U\_q(\mathfrak{n})\). Transf. Groups 8(1), 95–104 (2003)

    Article  MATH  Google Scholar 

  26. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3, 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lusztig, G.: Introduction to Quantum Groups. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  28. McNamara, P.: Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type. J. Reine Angew. Math. 707, 103–124 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Oh, S.: Auslander-Reiten quiver of type A and generalized quantum affine Schur–Weyl duality. Trans. Am. Math. Soc. 369, 1895–1933 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oh, S.: Auslander-Reiten quiver of type D and generalized quantum affine Schur–Weyl duality. J. Algebra 460, 203–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oh, S.: The Denominators of normalized R-matrices of types \(A^{(2)}\_{2n-1}\), \(A^{(2)}\_{2n}\), \(B^{(1)}\_{n}\) and \(D^{(2)}\_{n+1}\). Publ. Res. Inst. Math. Sci. 51, 709–744 (2015)

    Article  MathSciNet  Google Scholar 

  32. Oh, S., Suh, U.: Combinatorial Auslander-Reiten quivers and reduced expressions. arXiv:1509.04820

  33. Papi, P.: A characterization of a special ordering in a root system. Proc. Am. Math. 120, 661–665 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ringel, C.: PBW-bases of quantum groups. J. Reine Angew. Math. 470, 51–88 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Rouquier, R.: 2 Kac-Moody algebras. arXiv:0812.5023 (2008)

  36. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Varagnolo, M., Vasserot, E.: Canonical bases and KLR algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Young, C.A.S., Zegers, R.: Dorey’s rule and the q-characters of simply-laced quantum affine algebras. Comm. Math. Phys. 302(3), 789–813 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zelobenko, D.P.: Extremal cocycles on Weyl groups. Funktsional. Anal. i Prilozhen. 21(3), 11–21 (1987)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere gratitude to Professor Masaki Kashiwara, Myungho Kim and Chul-hee Lee for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-jin Oh.

Additional information

This work was supported by NRF Grant #2016R1C1B2013135.

Appendices

Appendix A: Dynkin quiver Q of type \(E_6\), its AR-quiver \(\Gamma _Q\) and Dorey’s rule for \(E_6^{(1)}\)

(1) Let us consider the Dynkin quiver Q given as follows:

Its AR-quiver \(\Gamma _Q\) can be drawn as follows :

By reading pairs and their socles, we can obtain Dorey’s rule for \(E_6^{(1)}\). Here we list several Dorey’s type morphisms:

$$\begin{aligned}&V(\varpi _6) \hookrightarrow V(\varpi _6)_{ q^{4}} \otimes V(\varpi _6)_{q^{-4}}, \quad V(\varpi _3) \hookrightarrow V(\varpi _1)_{q^{2}} \otimes V(\varpi _2)_{-q^{-1}}, \\&\quad V(\varpi _4) \hookrightarrow V(\varpi _1)_{-q^{3}} \otimes V(\varpi _6)_{q^{-2}},\\&V(\varpi _6) \hookrightarrow V(\varpi _1)_{-q^{3}} \otimes V(\varpi _5)_{-q^{-3}}, \quad V(\varpi _5) \hookrightarrow V(\varpi _2)_{-q^{9}} \otimes V(\varpi _3)_{q^{-2}}, \\&\quad V(\varpi _5) \hookrightarrow V(\varpi _1)_{q^{4}} \otimes V(\varpi _1)_{q^{-4}},\\&V(\varpi _4) \hookrightarrow V(\varpi _1)_{-q^{9}} \otimes V(\varpi _3)_{-q^{-1}}, \quad V(\varpi _2) \hookrightarrow V(\varpi _1)_{-q^{5}} \otimes V(\varpi _4)_{q^{-2}},\\&\quad V(\varpi _1) \hookrightarrow V(\varpi _1)_{-q^{5}} \otimes V(\varpi _6)_{-q^{-5}},\\&V(\varpi _5) \hookrightarrow V(\varpi _2)_{-q^{5}} \otimes V(\varpi _6)_{-q^{-5}}, \quad V(\varpi _3) \hookrightarrow V(\varpi _3)_{q^{4}} \otimes V(\varpi _3)_{q^{-4}}, \\&\quad V(\varpi _6) \hookrightarrow V(\varpi _3)_{-q^{5}} \otimes V(\varpi _3)_{-q^{-5}},\\&V(\varpi _6)_{q^{2}} \otimes V(\varpi _5)_{-q^{1}} \hookrightarrow V(\varpi _1)_{-q^{5}} \otimes V(\varpi _4), \quad V(\varpi _6)_{q^{2}} \otimes V(\varpi _4)_{q^{2}} \hookrightarrow V(\varpi _2)_{-q^{4}} \otimes V(\varpi _2),\\&V(\varpi _1)_{q^{6}} \otimes V(\varpi _6)_{q^{4}} \hookrightarrow V(\varpi _2)_{-q^{7}} \otimes V(\varpi _1), \quad V(\varpi _6)_{-q^{3}} \otimes V(\varpi _4)_{-q^{3}} \hookrightarrow V(\varpi _3)_{q^{4}} \otimes V(\varpi _1),\\&V(\varpi _1)_{-q^{1}} \otimes V(\varpi _1)_{-q^{5}} \otimes V(\varpi _5)_{-q^{3}} \hookrightarrow V(\varpi _2)_{q^{6}} \otimes V(\varpi _2). \end{aligned}$$

(2) The convex order \(\prec _{[{\widetilde{w}_0}]}\) in (b) of Example 1.10 can be visualized by the result of [32] as follows:

Appendix B: Dynkin quiver Q of type \(E_7\), its AR-quiver \(\Gamma _Q\) and Dorey’s rule for \(E_7^{(1)}\)

Let us consider the Dynkin quiver Q given as follows:

Its AR-quiver \(\Gamma _Q\) can be drawn as follows:

By reading pairs and their socles, we can obtain Dorey’s rule for \(E_7^{(1)}\). Here we list several Dorey’s type morphisms:

$$\begin{aligned} V(\varpi _4)&\hookrightarrow V(\varpi _3)_{-q^{1}} \otimes V(\varpi _1)_{q^{-2}}, \quad V(\varpi _1) \hookrightarrow V(\varpi _3)_{-q^{3}} \otimes V(\varpi _1)_{q^{-10}}, \\ V(\varpi _3)&\hookrightarrow V(\varpi _4)_{-q^{1}} \otimes V(\varpi _1)_{-q^{-15}},\\ V(\varpi _2)&\hookrightarrow V(\varpi _5)_{q^{2}} \otimes V(\varpi _1)_{-q^{-13}}, \quad V(\varpi _1) \hookrightarrow V(\varpi _6)_{q^{4}} \otimes V(\varpi _1)_{q^{-10}}, \\ V(\varpi _7)&\hookrightarrow V(\varpi _7)_{q^{8}} \otimes V(\varpi _1)_{-q^{-5}},\\ V(\varpi _6)&\hookrightarrow V(\varpi _1)_{q^{4}} \otimes V(\varpi _3)_{q^{-4}}, \quad V(\varpi _5) \hookrightarrow V(\varpi _2)_{q^{2}} \otimes V(\varpi _1)_{-q^{-3}},\\ V(\varpi _3)&\hookrightarrow V(\varpi _3)_{q^{6}} \otimes V(\varpi _3)_{q^{-6}},\\ V(\varpi _6)&\hookrightarrow V(\varpi _4)_{q^{4}} \otimes V(\varpi _3)_{-q^{-11}}, \quad V(\varpi _1) \hookrightarrow V(\varpi _4)_{q^{8}} \otimes V(\varpi _4)_{q^{-8}}, \\ V(\varpi _4)&\hookrightarrow V(\varpi _4)_{q^{6}} \otimes V(\varpi _4)_{q^{-6}},\\ V(\varpi _2)_{-q^{7}}&\otimes V(\varpi _7)_{-q^{5}} \hookrightarrow V(\varpi _3)_{-q^{9}} \otimes V(\varpi _1), \quad V(\varpi _1)_{q^{6}} \otimes V(\varpi _7)_{-q^{5}} \hookrightarrow V(\varpi _2)_{-q^{9}} \otimes V(\varpi _1),\\ V(\varpi _1)_{-q^{3}}&\otimes V(\varpi _7)_{q^{4}} \hookrightarrow V(\varpi _2)_{q^{6}} \otimes V(\varpi _1), \quad V(\varpi _3)_{q^{2}} \otimes V(\varpi _2)_{q^{2}} \hookrightarrow V(\varpi _6)_{-q^{5}} \otimes V(\varpi _5),\\ V(\varpi _7)_{-q^{1}}&\otimes V(\varpi _7)_{-q^{7}} \otimes V(\varpi _1)_{q^{4}} \hookrightarrow V(\varpi _6)_{q^{8}} \otimes V(\varpi _6). \end{aligned}$$

Appendix C: Dynkin quiver Q of type \(E_8\) and its AR-quiver \(\Gamma _Q\)

Let us consider the Dynkin quiver Q given as follows:

Note that \(i^*=i\) for all \(i\in I\). Its AR-quiver \(\Gamma _Q\) can be drawn as follows:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Sj. Auslander–Reiten quiver and representation theories related to KLR-type Schur–Weyl duality. Math. Z. 291, 499–554 (2019). https://doi.org/10.1007/s00209-018-2093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2093-2

Keywords

Mathematics Subject Classification

Navigation