Skip to main content
Log in

Dorey’s Rule and the q-Characters of Simply-Laced Quantum Affine Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({U_q(\widehat{\mathfrak g})}\) be the quantum affine algebra associated to a simply-laced simple Lie algebra \({\mathfrak{g}}\) . We examine the relationship between Dorey’s rule, which is a geometrical statement about Coxeter orbits of \({\mathfrak{g}}\) -weights, and the structure of q-characters of fundamental representations V i,a of \({U_q(\widehat{\mathfrak g})}\) . In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product \({V_{i,a}\otimes V_{j,b}\otimes V_{k,c}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braden H.W., Corrigan E., Dorey P.E., Sasaki R.: Affine Toda Field Theory and Exact S Matrices. Nucl. Phys. B 338, 689–746 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  2. Beck J.: Braid Group Action and Quantum Affine Algebras. Commun. Math. Phys. 165, 555–568 (1994)

    Article  MATH  ADS  Google Scholar 

  3. Braden H.W.: A Note on affine Toda couplings. J. Phys. A 25, L15–L20 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. Chari, V.J., Hernandez, D.: Beyond Kirillov-Reshetikhin Modules. In: Quantum Affine Algebras Extended Affine Lie Algebras, and Their Applications, Y. Gro et al (eds.), Cont. Math. 506, Providence, RI: Amer. Math. Soc., 2010, pp. 49–81

  5. Chari V.: Braid group actions and tensor products. Int. Math. Res. Notices. 2002, 357–382 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chari V., Moura A.: Characters of Fundamental Representations of Quantum Affine Algebras. Acta Appl. Math. 90, 43–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Corrigan, E.: Recent developments in affine Toda quantum field theory, Lecture at CRM-CAP Summer School, 16-24 Aug. 1994 (Banff, Alberta, Canada), available at http://arxiv.org/abs/hep-th/9412213v1, 1994

  8. Chari, V., Pressley, A.: A guide to quantum groups. Cambridge, UK: Cambridge. Univ. Pr., 1994

  9. Chari V., Pressley A.: Quantum affine algebras. Commun. Math. Phys. 142, 261–283 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Chari V., Pressley A.: Minimal affinization of representations of quantum groups: The Simply laced case. Lett. Math. Phys. 35, 99–114 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Chari V., Pressley A.: Yangians, integrable quantum systems and Dorey’s rule. Commun. Math. Phys. 181, 265–302 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Dorey P.: Root systems and purely elastic S matrices. Nucl. Phys. B 358, 654–676 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  13. Dorey, P.: Hidden geometrical structures in integrable models. Available at http://arxiv.org/abs/hep-th/9212143v2 , 1992

  14. Dorey P.: Root systems and purely elastic S matrices. 2. Nucl. Phys. B374, 741–762 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Dorey P.: A Remark on the coupling dependence in affine Toda field theories. Phys. Lett. B312, 291–298 (1993)

    MathSciNet  ADS  Google Scholar 

  16. Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equation. Sov. Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  17. Drinfeld V.G.: A New realization of Yangians and quantized affine algebras. Sov. Math. Dokl. 36, 212–216 (1988)

    MathSciNet  Google Scholar 

  18. Evans J.M., Kagan D., MacKay N.J., Young C.A.S.: Quantum, higher-spin, local charges in symmetric space sigma models. JHEP 01, 020 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. Enriquez B., Khoroshkin S., Pakuliak S.: Weight Functions and Drinfeld Currents. Commun. Math. Phys. 276, 691–725 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Fring A., Korff C., Schulz B.J.: On the universal representation of the scattering matrix of affine Toda field theory. Nucl. Phys. B567, 409–453 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fring A., Liao H.C., Olive D.I.: The Mass spectrum and coupling in affine Toda theories. Phys. Lett. B266, 82–86 (1991)

    MathSciNet  ADS  Google Scholar 

  22. Frenkel E., Mukhin E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Fring A., Olive D.I.: The Fusing rule and the scattering matrix of affine Toda theory. Nucl. Phys. B 379, 429–447 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  24. Frenkel E., Reshetikhin N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras. Contemp. Math. 248, 163–205 (1998)

    Article  MathSciNet  Google Scholar 

  25. Grosse P.: On quantum shuffle and quantum affine algebras. J. Alg. 318(2), 495–519 (2001)

    Article  MathSciNet  Google Scholar 

  26. Hernandez D.: Representations of Quantum Affinizations and Fusion Product. Trans. Groups 10, 163–200 (2005)

    Article  MATH  Google Scholar 

  27. Hernandez D.: The Kirillov-Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hernandez D.: Drinfeld coproduct, quantum fusion tensor category and applications. Proc. London Math. Soc. 95(3), 567–608 (2007)

    Article  MATH  Google Scholar 

  29. Hernandez D.: On minimal affinizations of representations of quantum groups. Commun. Math. Phys. 277, 221–259 (2007)

    Article  ADS  Google Scholar 

  30. Hernandez D., Leclerc B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154(2), 265–341 (2009)

    Article  MathSciNet  Google Scholar 

  31. Knight H.: Spectra of Tensor Products of Finite Dimensional Representations of Yangians. J. Algebra 174(1), 187–196 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kumar S.: A proof of the Parthasarathy Ranga Rao Varadarajan conjecture. Invent. Math. 93, 117–130 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. MacKay N.J.: New factorized S matrices associated with SO(N). Nucl. Phys. B 356, 729–749 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  34. MacKay, N.J.: On the bootstrap structure of Yangian invariant factorized S matrices. Int. J. Mod. Phys. (Proc. Suppl.), 3A, 360–364 (1992) presented at 21st Conference on Differential Geometric Methods in Theoretical Physics (XXI DGM), Tianjin, China, 5-9 Jun 1992

  35. Mathieu O.: Construction d’un groupe de Kac-Moody et applications. Compositio Math. 69, 37–60 (1989)

    MATH  MathSciNet  Google Scholar 

  36. Nakajima H.: t-analogs of q-characters of quantum affine algebras of type A n and D n . Contemp. Math. 325, 141–160 (2003)

    Article  MathSciNet  Google Scholar 

  37. Nakajima H.: t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nakajima H.: Quiver varieties and t-analogs of q-characters of quantum affine algebras. Ann. Math. 160(3), 1057–1097 (2004)

    Article  MathSciNet  Google Scholar 

  39. Nakajima, H.: t-analogs of q-characters of quantum affine algebras of type E 6, E 7, E 8. In: Representation Theory of Algebraic Groups and Quantum Groups, Prog. Math. 284, Berlin-Heidleberg NewYork: Springer, 2011, pp. 257–272

  40. Nakai, W., Nakanishi, T.: On Frenkel-Mukhin algorithm for q-character of quantum affine algebras. To appear in Adv. Stud. in Pure Math. Proc. of Workship “Exploration of new Structures and Natural Constructions” in Math. Phys. (Nagoya, 2007). available at http://arxiv.org/abs/0801.2239v2 [math.QA], 2008

  41. Oota T.: q-deformed Coxeter element in non-simply laced affine Toda field theories. Nucl. Phys. B 504, 738–752 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Parthasarathy K.R., Ranga Rao R., Varadarajan V.S.: Representations of complex semi-simple Lie groups and Lie algebras. Ann. Math. 85, 383–429 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  43. Saleur H., Wehefritz-Kaufmann B.: Thermodynamics of the complex su(3) Toda theory. Phys. Lett. B 481, 419–426 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Takacs G., Watts G.: Non-unitarity in quantum affine Toda theory and perturbed conformal field theory. Nucl. Phys. B 547, 538–568 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Varagnolo M.: Quiver Varieties and Yangians. Lett. Math. Phys. 53, 273–283 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. S. Young.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, C.A.S., Zegers, R. Dorey’s Rule and the q-Characters of Simply-Laced Quantum Affine Algebras. Commun. Math. Phys. 302, 789–813 (2011). https://doi.org/10.1007/s00220-011-1189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1189-x

Keywords

Navigation