Skip to main content

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 28))

Abstract

Quiver representations and Kac–Moody Lie algebras. The interaction between quiver representations and Kac–Moody Lie algebras has an origin in Gabriel’s theorem. Gabriel [15] classified the quivers which are finite representation types and showed the existence of the bijection between the set of isomorphism classes of indecomposable representations of Dynkin quivers Q and the set of positive roots of the corresponding simply laced Lie algebra \({\mathfrak {g}}_{Q}\) via dimension vectors. Bernšteĭn–Gel’fand–Ponomarev [2] gave a proof of Gabriel’s theorem using reflection functors and Coxeter functors. Using the theory of species introduced by Gabriel [16], Dlab–Ringel [11] extended Gabriel’s theorem to finite dimensional hereditary algebras over arbitrary fields. The classification of the indecomposable representations of affine quivers was studied by Weierstrass, Kronecker, Gel’fand–Ponomarev, Donovan–Freislich, Nazarova and Dlab–Ringel [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ALE stands for asymptotically locally Euclidean.

  2. 2.

    ADHM stands for Atiyah–Drinfeld–Hitchin–Manin.

  3. 3.

    S stands for Seshadri.

References

  1. D. Baer, W. Geigle, H. Lenzing, The preprojective algebra of a tame hereditary Artin algebra. Comm. Algebra 15(1–2), 425–457 (1987).

    Article  MathSciNet  Google Scholar 

  2. I.N. Bernšteĭn, I.M. Gel’fand, V.A. Ponomarev, Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28(2(170)), 19–33 (1973).

    Article  MathSciNet  Google Scholar 

  3. H. Cassens, P. Slodowy, On Kleinian singularities and quivers, in Singularities (Oberwolfach, 1996). Progress in Mathematics, vol. 162 (Birkhäuser, Basel, 1998), pp. 263–288.

    Chapter  Google Scholar 

  4. W. Crawley-Boevey, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities. Comment. Math. Helv. 74(4), 548–574 (1999).

    Article  MathSciNet  Google Scholar 

  5. W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities. Am. J. Math. 122(5), 1027–1037 (2000).

    Article  MathSciNet  Google Scholar 

  6. W. Crawley-Boevey, Geometry of the moment map for representations of quivers. Compos. Math. 126(3), 257–293 (2001).

    Google Scholar 

  7. W. Crawley-Boevey, Decomposition of Marsden-Weinstein reductions for representations of quivers. Compos. Math. 130(2), 225–239 (2002).

    Google Scholar 

  8. W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers. Math. Ann. 325(1), 55–79 (2003).

    Article  MathSciNet  Google Scholar 

  9. W. Crawley-Boevey, M.P. Holland, Noncommutative deformations of Kleinian singularities. Duke Math. J. 92(3), 605–635 (1998).

    Article  MathSciNet  Google Scholar 

  10. L. Demonet, Skew group algebras of path algebras and preprojective algebras. J. Algebra 323(4), 1052–1059 (2010).

    Article  MathSciNet  Google Scholar 

  11. V. Dlab, C.M. Ringel, On algebras of finite representation type. J. Algebra 33, 306–394 (1975).

    Article  MathSciNet  Google Scholar 

  12. V. Dlab, C.M. Ringel, Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 6(173), v+57 (1976).

    Article  MathSciNet  Google Scholar 

  13. V. Dlab, C.M. Ringel, The preprojective algebra of a modulated graph, in Representation Theory, II (Proceedings of the Second International Conference on Representations of Algebras Ottawa, Carleton University, 1979), vol. 832. Lecture Notes in Math (Springer, Berlin, New York, 1980), pp. 216–231.

    Chapter  Google Scholar 

  14. J. Engel, M. Reineke, Smooth models of quiver moduli. Math. Z. 262(4), 817–848 (2009).

    Article  MathSciNet  Google Scholar 

  15. P. Gabriel, Unzerlegbare Darstellungen. I. Manuscripta Math. 6, 71–103; correction, ibid. 6 (1972), 309, 1972.

    Article  MathSciNet  Google Scholar 

  16. P. Gabriel, Indecomposable representations. II, in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) (Academic, London, 1973), pp. 81–104.

    Google Scholar 

  17. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in Representation Theory, I (Proceedings of the Workshop on the Present Trends in Representation Theory, Ottawa, Carleton University, 1979). Lecture Notes in Mathematics, vol. 831 (Springer, Berlin, 1980), pp. 1–71.

    Google Scholar 

  18. C. Geiss, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras. II. A multiplication formula. Compos. Math. 143(5), 1313–1334 (2007).

    Article  MathSciNet  Google Scholar 

  19. I.M. Gel\(^{\prime }\)fand, V.A. Ponomarev, Model algebras and representations of graphs. Funktsional. Anal. i Prilozhen. 13(3), 1–12 (1979).

    Google Scholar 

  20. V. Ginzburg, Lectures on Nakajima’s quiver varieties, in Geometric Methods in Representation Theory. I. Séminaires Congrès, vol. 24 (Société Mathématique De France, Paris, 2012).

    Google Scholar 

  21. T. Hausel, Kac’s conjecture from Nakajima quiver varieties. Invent. Math. 181(1), 21–37 (2010).

    Article  MathSciNet  Google Scholar 

  22. T. Hausel, E. Letellier, F. Rodriguez-Villegas, Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math. (2), 177(3), 1147–1168 (2013).

    Article  MathSciNet  Google Scholar 

  23. K. Iohara, Introduction to representations of quivers, in Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers. Algorithms and Computation in Mathematics (Springer, Berlin, 2019).

    Google Scholar 

  24. V.G. Kac, Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56(1), 57–92 (1980).

    Article  MathSciNet  Google Scholar 

  25. V.G. Kac, Infinite root systems, representations of graphs and invariant theory II. J. Algebra 78(1), 141–162 (1982).

    Article  MathSciNet  Google Scholar 

  26. V.G. Kac, Root systems, representations of quivers and invariant theory, in Invariant Theory (Montecatini, 1982). Lecture Notes in Math, vol. 996 (Springer, Berlin, 1983), pp. 74–108.

    Google Scholar 

  27. M. Kashiwara, Y. Saito, Geometric construction of crystal bases. Duke Math. J. 89(1), 9–36 (1997).

    Article  MathSciNet  Google Scholar 

  28. A.D. King, Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994).

    Article  MathSciNet  Google Scholar 

  29. P.B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989).

    Article  MathSciNet  Google Scholar 

  30. P.B. Kronheimer, H. Nakajima, Yang-Mills instantons on ALE gravitational instantons. Math. Ann. 288(2), 263–307 (1990).

    Article  MathSciNet  Google Scholar 

  31. G. Lusztig, Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990).

    Article  MathSciNet  Google Scholar 

  32. G. Lusztig, Canonical bases arising from quantized enveloping algebras. II. Progr. Theor. Phys. Suppl. 102, 175–201 (1991) (Common trends in mathematics and quantum field theories, Kyoto, 1990).

    Google Scholar 

  33. G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4(2), 365–421 (1991).

    Article  MathSciNet  Google Scholar 

  34. G. Lusztig, Quiver varieties and Weyl group actions. Ann. Inst. Fourier (Grenoble) 50(2), 461–489 (2000).

    Article  MathSciNet  Google Scholar 

  35. A. Maffei, A remark on quiver varieties and Weyl groups. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(3), 649–686 (2002).

    Google Scholar 

  36. A. Maffei, Quiver varieties of type A. Comment. Math. Helv. 80(1), 1–27 (2005).

    Google Scholar 

  37. I. Mirković, M. Vybornov, Quiver varieties and Beilinson-Drinfeld grassmannians of type A. https://arxiv.org/abs/0712.4160.

  38. I. Mirković, M. Vybornov, On quiver varieties and affine Grassmannians of type \(A\). C. R. Math. Acad. Sci. Paris 336(3), 207–212 (2003).

    Google Scholar 

  39. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365–416 (1994).

    Article  MathSciNet  Google Scholar 

  40. H. Nakajima, Varieties associated with quivers, in Representation Theory of Algebras and Related Topics (Mexico City, 1994). CMS Conference Proceedings, vol. 19 (American Mathematical Society, Providence, RI, 1996), pp. 139–157.

    Google Scholar 

  41. H. Nakajima, Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998).

    Article  MathSciNet  Google Scholar 

  42. H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series, vol. 18 (American Mathematical Society, Providence, RI, 1999).

    Google Scholar 

  43. H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001).

    Google Scholar 

  44. H. Nakajima, Reflection functors for quiver varieties and Weyl group actions. Math. Ann. 327(4), 671–721 (2003).

    Article  MathSciNet  Google Scholar 

  45. H. Nakajima, Quiver varieties and \(t\)-analogs of \(q\)-characters of quantum affine algebras. Ann. Math. (2) 160(3), 1057–1097 (2004).

    Article  MathSciNet  Google Scholar 

  46. H. Nakajima, Sheaves on ALE spaces and quiver varieties. Mosc. Math. J. 7(4), 699–722, 767 (2007).

    Article  MathSciNet  Google Scholar 

  47. H. Nakajima, Quiver varieties and branching. SIGMA Symmetry Integrability Geom. Methods Appl. 5(Paper 003), 37 (2009).

    Google Scholar 

  48. H. Nakajima, Quiver varieties and cluster algebras. Kyoto J. Math. 51(1), 71–126 (2011).

    Article  MathSciNet  Google Scholar 

  49. M. Reineke, Framed quiver moduli, cohomology, and quantum groups. J. Algebra 320(1), 94–115 (2008).

    Article  MathSciNet  Google Scholar 

  50. I. Reiten, C. Riedtmann, Skew group algebras in the representation theory of Artin algebras. J. Algebra 92(1), 224–282 (1985).

    Article  MathSciNet  Google Scholar 

  51. I. Reiten, M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type. Mem. Am. Math. Soc. 80(408), viii+72 (1989).

    Article  MathSciNet  Google Scholar 

  52. C.M. Ringel, Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990).

    Article  MathSciNet  Google Scholar 

  53. C.M. Ringel, The preprojective algebra of a quiver, in Algebras and modules, II (Geiranger, 1996). CMS Conference Proceedings, vol. 24 (American Mathematical Society, Providence, RI, 1998) pp. 467–480.

    Google Scholar 

  54. A. Rudakov, Stability for an abelian category. J. Algebra 197(1), 231–245 (1997).

    Article  MathSciNet  Google Scholar 

  55. O. Schiffmann, Variétés carquois de Nakajima (d’après Nakajima, Lusztig, Varagnolo, Vasserot, Crawley-Boevey, et al.). Astérisque, 317:Exp. No. 976, ix, 295–344, 2008. Séminaire Bourbaki. Vol. 2006/2007.

    Google Scholar 

  56. D. Yamakawa, Applications of quiver varieties to moduli spaces of connections on \(\mathbb{P}^1\), in Two Algebraic by Ways from Differential Equations: GröbnerBases and Quivers. Algorithms and Computation in Mathematics. (Springer, Berlin, 2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kimura, Y. (2020). Introduction to Quiver Varieties. In: Iohara, K., Malbos, P., Saito, MH., Takayama, N. (eds) Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers. Algorithms and Computation in Mathematics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-26454-3_7

Download citation

Publish with us

Policies and ethics