Skip to main content
Log in

Simple tensor products

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let ℱ be the category of finite-dimensional representations of an arbitrary quantum affine algebra. We prove that a tensor product S 1 ⋅⋅⋅ S N of simple objects of ℱ is simple if and only S i S j is simple for any i<j.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 335(5), 839–867 (1997)

    Article  MathSciNet  Google Scholar 

  2. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165(3), 555–568 (1994)

    Article  MATH  Google Scholar 

  3. Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis. Duke Math. J. 99(3), 455–487 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beck, J., Nakajima, H.: Crystal bases and two-sided cells of quantum affine algebras. Duke Math. J. 123(2), 335–402 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 7, 357–382 (2003)

    Google Scholar 

  6. Chari, V., Hernandez, D.: Beyond Kirillov-Reshetikhin modules. Contemp. Math. 506, 49–81 (2010)

    MathSciNet  Google Scholar 

  7. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142(2), 261–283 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  9. Chari, V., Pressley, A.: Minimal affinizations of representations of quantum groups: the nonsimply-laced case. Lett. Math. Phys. 35(2), 99–114 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chari, V., Pressley, A.: Twisted quantum affine algebras. Commun. Math. Phys. 196(2), 461–476 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Damiani, I.: La ℛ-matrice pour les algèbres quantiques de type affine non tordu. Ann. Sci. Ecole Norm. Super. (4) 31(4), 493–523 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Damiani, I.: The ℛ-matrix for (twisted) affine quantum algebras. In: Representations and Quantizations, Shanghai, 1998, pp. 89–144. China High. Educ. Press, Beijing (2000)

    Google Scholar 

  13. Frenkel, E., Mukhin, E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23–57 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frenkel, I., Reshetikhin, N.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146(1), 1–60 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frenkel, E., Reshetikhin, N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras, recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)

    MathSciNet  Google Scholar 

  16. Hernandez, D.: Algebraic approach to q, t-characters. Adv. Math. 187(1), 1–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hernandez, D.: On minimal affinizations of representations of quantum groups. Commun. Math. Phys. 277(1), 221–259 (2007)

    Article  Google Scholar 

  18. Hernandez, D.: Kirillov-Reshetikhin conjecture: the general case. Int. Math. Res. Not. 1, 149–193 (2010)

    Google Scholar 

  19. Hernandez, D., Leclerc, B.: Cluster algebras and quantum affine algebras. Duke Math. J. (to appear). Preprint arXiv:0903.1452

  20. Jimbo, M.: A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11(3), 247–252 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jing, N., Misra, K.: Vertex operators for twisted quantum affine algebras. Trans. Am. Math. Soc. 351(4), 1663–1690 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jimbo, M., Miwa, T.: Algebraic analysis of solvable lattice models. In: Published for the Conference Board of the Mathematical Sciences. CBMS Regional Conference Series in Mathematics, vol. 85, American Mathematical Society, Washington (1995)

    Google Scholar 

  23. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  24. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kazhdan, D., Soibelman, Y.: Representations of quantum affine algebras. Sel. Math. New Ser. 1(3), 537–595 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Leclerc, B.: Imaginary vectors in the dual canonical basis of U q (n). Transform. Groups 8(1), 95–104 (2003)

    MATH  MathSciNet  Google Scholar 

  27. Nakajima, H.: Quiver varieties and t-analogs of q-characters of quantum affine algebras. Ann. Math. 160, 1057–1097 (2004)

    Article  MathSciNet  Google Scholar 

  28. Nakajima, H.: Extremal weight modules of quantum affine algebras. In: Representation Theory of Algebraic Groups and Quantum Groups. Adv. Stud. Pure Math., vol. 40, pp.  343–369. Math. Soc. Japan, Tokyo (2004)

    Google Scholar 

  29. Nakajima, H.: Quiver varieties and cluster algebras. Preprint arXiv:0905.0002

  30. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules associated with skew Young diagrams. Duke Math. J. 112, 343–378 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Reshetikhin, N., Turaev, V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Steinberg, R.: Representations of algebraic groups. Nagoya Math. J. 22, 33–56 (1963)

    MATH  MathSciNet  Google Scholar 

  33. Varagnolo, M., Vasserot, E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernandez.

Additional information

Supported partially by ANR through Project “Géométrie et Structures Algébriques Quantiques”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, D. Simple tensor products. Invent. math. 181, 649–675 (2010). https://doi.org/10.1007/s00222-010-0256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0256-9

Keywords

Navigation