Skip to main content

Advertisement

Log in

Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNT) are new materials with a wide range of industrial and commercial applications. However, their nano-scaled size and fiber-like shape render them respirable and potentially fibrogenic if inhaled into the lungs. To understand MWCNT fibrogenesis, we analyzed the pathologic and molecular aspects of the early phase response to MWCNT in mouse lungs. MWCNT induced rapid and pronounced lesions in the lungs characterized by increased cellularity and formation of fibrotic foci, most notably near where MWCNT deposited, within 14 days post-exposure. Deposition of collagen fibers was markedly increased in the alveolar septa and fibrotic foci, accompanied by elevated expression of fibrotic genes Col1a1, Col1a2, and Fn1 at both mRNA and protein levels. Fibrosis was induced rapidly at 40 μg, wherein fibrotic changes were detected on day 1 and reached a maximal intensity on day 7 through day 14. Induction of fibrosis was dose-dependent at the dose range of 5–40 μg, 7 days post-exposure. MWCNT elicited rapid and prominent infiltrations of neutrophils and macrophages alongside fibrosis implicating acute inflammation in the fibrotic response. At the molecular level, MWCNT induced elevated expression of proinflammatory cytokines TNFα, IL1α, IL1β, IL6, and CCL2 in lung tissues as well as the bronchoalveolar lavage fluid, in a dose- and time-dependent manner. MWCNT also increased the expression of fibrogenic growth factors TGF-β1 and PDGF-A in the lungs significantly. These findings underscore the interplay between acute inflammation and the early fibrotic response in the initiation and propagation of pulmonary fibrosis induced by MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAL:

Bronchoalveolar lavage

CNT:

Carbon nanotubes

DM:

Dispersion medium

Gapdh :

Glyceraldehyde 3-phosphate dehydrogenase

IL:

Interleukin

LDH:

Lactate dehydrogenase

MWCNT:

Multi-walled carbon nanotubes

PBS:

Phosphate-buffered saline

PDGF:

Platelet-derived growth factor

SWCNT:

Single-walled carbon nanotubes

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

References

  • Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. doi:10.1056/NEJM200005043421807

    Article  CAS  PubMed  Google Scholar 

  • Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15(4):255–273. doi:10.1016/j.cytogfr.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  • Brody AR, Roe MW (1983) Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis 128(4):724–729

    CAS  PubMed  Google Scholar 

  • Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Castranova V, Vallyathan V (2000) Silicosis and coal workers’ pneumoconiosis. Environ Health Perspect 108(Suppl 4):675–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dales RE, Munt PW (1982) Farmer’s lung disease. Can Fam Physician Med 28:1817–1820

    CAS  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539. doi:10.1126/science.1222453

    Article  PubMed  Google Scholar 

  • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J cell biol 122(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22. doi:10.1093/toxsci/kfj130

    Article  CAS  PubMed  Google Scholar 

  • Fielding CA, Jones GW, McLoughlin RM et al (2014) Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 40(1):40–50. doi:10.1016/j.immuni.2013.10.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gharaee-Kermani M, Denholm EM, Phan SH (1996) Costimulation of fibroblast collagen and transforming growth factor beta1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem 271(30):17779–17784

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Fujimoto M, Kikuchi K, Takehara K (1997) Elevated serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: association with pulmonary fibrosis. J Rheumatol 24(4):663–665

    CAS  PubMed  Google Scholar 

  • He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q (2011) Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kappaB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol 24(12):2237–2248. doi:10.1021/tx200351d

    Article  CAS  PubMed  Google Scholar 

  • He X, Young SH, Ferback JE, Ma Q (2012) Single-walled carbon nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-κB signaling. J Clin Toxicol S5:005. doi:10.4172/2161-0495.S5-005

    Google Scholar 

  • Hubner RH, Gitter W, El Mokhtari NE, et al. (2008) Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 44(4):507–511, 514–517. doi:10.2144/000112729

  • Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536. doi:10.1172/JCI12568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lesur OJ, Mancini NM, Humbert JC, Chabot F, Polu JM (1994) Interleukin-6, interferon-gamma, and phospholipid levels in the alveolar lining fluid of human lungs. Profiles in coal worker’s pneumoconiosis and idiopathic pulmonary fibrosis. Chest 106(2):407–413

    Article  CAS  PubMed  Google Scholar 

  • Maynard AM, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614

    Article  CAS  Google Scholar 

  • Mercer RR, Hubbs AF, Scabilloni JF et al (2010) Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 7:28. doi:10.1186/1743-8977-7-28

    Article  PubMed Central  PubMed  Google Scholar 

  • Mercer RR, Hubbs AF, Scabilloni JF et al (2011) Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8:21. doi:10.1186/1743-8977-8-21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mercer RR, Scabilloni JF, Hubbs AF et al (2013a) Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 10(1):33. doi:10.1186/1743-8977-10-33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mercer RR, Scabilloni JF, Hubbs AF et al (2013b) Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol 10(1):38. doi:10.1186/1743-8977-10-38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Araki K, Vesin C et al (1995) Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis. A mouse model of progressive pulmonary fibrosis. J Clin Invest 96(1):250–259. doi:10.1172/JCI118029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160. doi:10.1152/ajplung.00313.2007

    Article  CAS  PubMed  Google Scholar 

  • Mouratis MA, Aidinis V (2011) Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med 17(5):355–361. doi:10.1097/MCP.0b013e328349ac2b

    Article  CAS  PubMed  Google Scholar 

  • NIOSH (2013) Current strategies for engineering controls in nanomaterial production and downstream handling processes, vol HDDS (NIOSH) Publication No. 2014-102. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati

  • O’Reilly KM, McLaughlin AM, Beckett WS, Sime PJ (2007) Asbestos-related lung disease. Am Fam Physician 75(5):683–688

    PubMed  Google Scholar 

  • Porter DW, Sriram K, Wolfarth MG et al (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2:144–154

    Article  CAS  Google Scholar 

  • Porter DW, Hubbs AF, Mercer RR et al (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147. doi:10.1016/j.tox.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  • Porter DW, Hubbs AF, Chen BT et al (2013) Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 7(7):1179–1194. doi:10.3109/17435390.2012.719649

    Article  CAS  PubMed  Google Scholar 

  • Rao GV, Tinkle S, Weissman DN et al (2003) Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health Part A 66(15):1441–1452. doi:10.1080/15287390306417

    Article  CAS  PubMed  Google Scholar 

  • Rom WN (2007) Environmental and occupational medicine, 4th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Ryman-Rasmussen JP, Cesta MF, Brody AR et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4(11):747–751. doi:10.1038/nnano.2009.305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708. doi:10.1152/ajplung.00084.2005

    Article  CAS  PubMed  Google Scholar 

  • Suwara MI, Green NJ, Borthwick LA et al (2014) IL-1alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol 7(3):684–693. doi:10.1038/mi.2013.87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trojanowska M (2008) Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology 47(Suppl 5):v2–v4. doi:10.1093/rheumatology/ken265

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350. doi:10.1084/jem.20110551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Lee TC, Guillemin B, Yu MC, Rom WN (1993) Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol 150(9):4188–4196

    CAS  PubMed  Google Scholar 

  • Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8):1237–1265. doi:10.1002/smll.201203252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant to QM from National Institute for Occupational Safety and Health, Health Effects Laboratory Division. The anti-MBP antibody was kindly offered by Drs. Nancy A. Lee and James J. Lee at Mayo Clinic (Scottsdale, AZ, USA).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standard

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Additional information

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Porter, D.W., Batteli, L.A. et al. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Arch Toxicol 89, 621–633 (2015). https://doi.org/10.1007/s00204-014-1428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1428-y

Keywords

Navigation