Skip to main content
Log in

Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Literature regarding hypersonic shock/boundary-layer interaction is mostly restricted to calorically perfect gases, even though this condition is far from reality when temperature rises. High-temperature effects alter physical and transport properties of the fluid, due to vibrational excitation and gas dissociation, and chemical reactions must be considered in order to compute the flow field. In this work, a code for hypersonic aerodynamics with reactions using parallel machines (CHARLIE) is described and a numerical methodology is developed to perform direct numerical simulations of shock/boundary-layer interaction in chemical nonequilibrium. The numerical scheme and the characterization of non-reflecting boundary conditions are addressed. Results show that the flow properties differ considerably if chemical reactions are taken into account. A direct numerical simulation of a shock interacting with a turbulent boundary layer in the hypersonic regime with high-temperature effects is also presented for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Settles, G.S., Bogdonoff, S.M., Vas, I.E.: Incipient separation of a supersonic turbulent boundary layer at high Reynolds numbers. AIAA J. 14(1), 50–56 (1976). https://doi.org/10.2514/3.61331

    Article  Google Scholar 

  2. Thomas, F.O., Putnam, C.M., Chu, H.C.: On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions. Exp. Fluids 18(1), 69–81 (1994). https://doi.org/10.1007/BF00209362

    Article  Google Scholar 

  3. Dupont, P., Haddad, C., Debieve, J.F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006). https://doi.org/10.1017/S0022112006000267

    Article  MATH  Google Scholar 

  4. Délery, J., Dussauge, J.-P.: Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19(6), 453–468 (2009). https://doi.org/10.1007/s00193-009-0220-z

    Article  MATH  Google Scholar 

  5. Piponniau, S., Dussauge, J.P., Debieve, J.F., Dupont, P.: A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87–108 (2009). https://doi.org/10.1017/S0022112009006417

    Article  MATH  Google Scholar 

  6. Bleilebens, M., Olivier, H.: On the influence of elevated surface temperatures on hypersonic shock wave/boundary layer interaction at a heated ramp model. Shock Waves 15(5), 301–312 (2006). https://doi.org/10.1007/s00193-006-0025-2

    Article  Google Scholar 

  7. Adams, N.A.: Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and \(\text{ Re}_\theta = 1685\). J. Fluid Mech. 420, 47–83 (2000). https://doi.org/10.1017/S0022112000001257

    Article  MATH  Google Scholar 

  8. Rizzetta, D.P., Visbal, M.R., Gaitonde, D.V.: Large-eddy simulation of supersonic compression-ramp flow by high-order method. AIAA J. 39(12), 2283–2292 (2001). https://doi.org/10.2514/2.1266

    Article  Google Scholar 

  9. Wu, M., Martin, M.P.: Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 71–83 (2008). https://doi.org/10.1017/S0022112007009044

    Article  MATH  Google Scholar 

  10. Pirozzoli, S., Beer, A., Bernardini, M., Grasso, F.: Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves 19(6), 487–497 (2009). https://doi.org/10.1007/s00193-009-0215-9

    Article  MATH  Google Scholar 

  11. Touber, E., Sandham, N.D.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23(2), 79–107 (2009). https://doi.org/10.1007/s00162-009-0103-z

    Article  MATH  Google Scholar 

  12. Pirozzoli, S., Bernardini, M.: Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49(6), 1307–1312 (2011). https://doi.org/10.2514/1.J050901

  13. Aubard, G., Gloerfelt, X., Robinet, J.-C.: Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51(10), 2395–2409 (2013). https://doi.org/10.2514/1.J052249

  14. Elfstrom, G.M.: Turbulent hypersonic flow at a wedge-compression corner. J. Fluid Mech. 53(1), 113–127 (1972). https://doi.org/10.1017/S0022112072000060

    Article  Google Scholar 

  15. Schülein, E.: Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA J. 44(8), 1732–1741 (2006). https://doi.org/10.2514/1.15110

    Article  Google Scholar 

  16. Sandham, N.D., Schülein, E., Wagner, A., Willems, S., Steelant, J.: Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349–382 (2014). https://doi.org/10.1017/jfm.2014.333

    Article  Google Scholar 

  17. Fu, L., Karp, M., Bose, S.T., Moin, P., Urzay, J.: Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. 909, A8 (2021). https://doi.org/10.1017/jfm.2020.935

    Article  MathSciNet  MATH  Google Scholar 

  18. Settles, G.S., Dodson, L.J.: Supersonic and hypersonic shock/boundary-layer interaction database. AIAA J. 32(7), 1377–1383 (1994). https://doi.org/10.2514/3.12205

    Article  Google Scholar 

  19. Anderson Jr., J.D.: Hypersonic and High-Temperature Gas Dynamics. American Institute of Aeronautics and Astronautics, Reston (2006)

    Book  Google Scholar 

  20. Gnoffo, P.A.: Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31(1), 459–494 (1999). https://doi.org/10.1146/annurev.fluid.31.1.459

    Article  Google Scholar 

  21. Candler, G.V.: Rate effects in hypersonic flows. Annu. Rev. Fluid Mech. 51, 379–402 (2019). https://doi.org/10.1146/annurev-fluid-010518-040258

    Article  MathSciNet  MATH  Google Scholar 

  22. Duan, L., Martin, M.P.: Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 25–59 (2011). https://doi.org/10.1017/jfm.2011.252

    Article  MathSciNet  MATH  Google Scholar 

  23. Di Renzo, M., Urzay, J.: Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. J. Fluid Mech. 912, A29 (2021). https://doi.org/10.1017/jfm.2020.1144

    Article  MathSciNet  MATH  Google Scholar 

  24. Brown, J.L.: Hypersonic shock wave impingement on turbulent boundary layers: computational analysis and uncertainty. J. Spacecr. Rockets 50(1), 96–123 (2013). https://doi.org/10.2514/1.A32259

    Article  Google Scholar 

  25. Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations. Technical Report, NASA SP-273 (1976)

  26. Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.P.: A review of reaction rates and thermodynamic and transport properties for 11-species air model for chemical and thermal nonequilibrium calculation to 30,000 k. NASA RP, 1232 (1990)

  27. Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18(4), 517–519 (1950). https://doi.org/10.1063/1.1747673

    Article  Google Scholar 

  28. Kuo, K.K.: Principles of Combustion. Wiley, New York (1986)

    Google Scholar 

  29. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the euler equations by finite volume methods using Runge Kutta time stepping schemes. 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, AIAA Paper 1981-1259 (1981). https://doi.org/10.2514/6.1981-1259

  30. Visbal, M.R., Gaitonde, D.V.: High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231–1239 (1999). https://doi.org/10.2514/2.591

    Article  Google Scholar 

  31. Kennedy, C.A., Carpenter, M.H.: Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14(4), 397–433 (1994). https://doi.org/10.1016/0168-9274(94)00004-2

    Article  MathSciNet  MATH  Google Scholar 

  32. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004). https://doi.org/10.1016/j.jcp.2003.09.003

    Article  MATH  Google Scholar 

  33. Bogey, C., De Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228(5), 1447–1465 (2009). https://doi.org/10.1016/j.jcp.2008.10.042

    Article  MathSciNet  MATH  Google Scholar 

  34. Aubard, G., Volpiani, P.S., Gloerfelt, X., Robinet, J.-C.: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations. Flow Turbul. Combust. 91(3), 497–518 (2013b). https://doi.org/10.1007/s10494-013-9485-5

    Article  Google Scholar 

  35. Ducros, F., Laporte, F., Souleres, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161(1), 114–139 (2000). https://doi.org/10.1006/jcph.2000.6492

    Article  MathSciNet  MATH  Google Scholar 

  36. Hedstrom, G.W.: Nonreflecting boundary conditions for nonlinear hyperbolic systems. J. Comput. Phys. 30(2), 222–237 (1979). https://doi.org/10.1016/0021-9991(79)90100-1

    Article  MathSciNet  MATH  Google Scholar 

  37. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 (1987). https://doi.org/10.1016/0021-9991(87)90041-6

    Article  MathSciNet  MATH  Google Scholar 

  38. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992). https://doi.org/10.1016/0021-9991(92)90046-2

    Article  MathSciNet  MATH  Google Scholar 

  39. Baum, M., Poinsot, T.J., Haworth, D.C., Darabiha, N.: Direct numerical simulation of H\(_2\)/O\(_2\)/N\(_2\) flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 1–32 (1994). https://doi.org/10.1017/S0022112094003010

  40. Okong’o, N., Bellan, J.: Consistent boundary conditions for multicomponent real gas mixtures based on characteristic waves. J. Comput. Phys. 176(2), 330–344 (2002). https://doi.org/10.1006/jcph.2002.6990

  41. Pakdee, W., Mahalingam, S.: An accurate method to implement boundary conditions for reacting flows based on characteristic wave analysis. Combust. Theor. Model. 7(4), 705–729 (2003). https://doi.org/10.1088/1364-7830/7/4/006

    Article  MathSciNet  MATH  Google Scholar 

  42. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn (2011). http://elearning.cerfacs.fr/combustion/

  43. Gloerfelt, X., Lafon, P.: Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Comput. Fluids 37(4), 388–401 (2008). https://doi.org/10.1016/j.compfluid.2007.02.004

    Article  MATH  Google Scholar 

  44. Degrez, G., Boccadoro, C.H., Wendt, J.F.: The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study. J. Fluid Mech. 177, 247–263 (1987). https://doi.org/10.1017/S0022112087000946

    Article  Google Scholar 

  45. Gross, A., Fasel, H.F.: Numerical investigation of shock boundary-layer interactions. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, AIAA Paper 2016-0347 (2016). https://doi.org/10.2514/6.2016-0347

  46. Saïdi, I.B.H., Tenaud, C., Fournier, G.: Solving three dimensional turbulent compressible flows using a high order one step monotony preserving scheme. 10th International Conference on Computational Fluid Dynamics (ICCFD10), pp. 10–114 (2018)

  47. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21(12), 126101 (2009). https://doi.org/10.1063/1.3275856

    Article  MATH  Google Scholar 

  48. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229(4), 1213–1237 (2010). https://doi.org/10.1016/j.jcp.2009.10.028

  49. Selle, L., Nicoud, F., Poinsot, T.: Actual impedance of nonreflecting boundary conditions: implications for computation of resonators. AIAA J. 42(5), 958–964 (2004). https://doi.org/10.2514/1.1883

    Article  Google Scholar 

  50. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143 (2008). https://doi.org/10.1016/j.jcp.2008.01.038

    Article  MathSciNet  MATH  Google Scholar 

  51. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003). https://doi.org/10.1016/S0021-9991(03)00090-1

    Article  MATH  Google Scholar 

  52. Xie, Z.T., Castro, I.P.: Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 81(3), 449–470 (2008). https://doi.org/10.1007/s10494-008-9151-5

    Article  MATH  Google Scholar 

  53. Adler, M.C., Gonzalez, D.R., Stack, C.M., Gaitonde, D.V.: Synthetic generation of equilibrium boundary layer turbulence from modeled statistics. Comput. Fluids 165, 127–143 (2018). https://doi.org/10.1016/j.compfluid.2018.01.003

    Article  MathSciNet  MATH  Google Scholar 

  54. Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998). https://doi.org/10.1006/jcph.1998.5882

    Article  MathSciNet  MATH  Google Scholar 

  55. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010). https://doi.org/10.1017/S0022112010003113

    Article  MATH  Google Scholar 

  56. Hopkins, E.J., Inouye, M.: An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J. 9(6), 993–1003 (1971). https://doi.org/10.2514/3.6323

  57. Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120–168 (2011b). https://doi.org/10.1017/jfm.2011.368

    Article  MathSciNet  MATH  Google Scholar 

  58. Volpiani, P.S., Bernardini, M., Larsson, J.: Effects of a nonadiabatic wall on supersonic shock/boundary-layer interactions. Phys. Rev. Fluids 3, 083401 (2018). https://doi.org/10.1103/PhysRevFluids.3.083401

  59. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, New York (2016)

    MATH  Google Scholar 

  60. Duan, L., Martin, M.P.: Effect of finite-rate chemical reactions on turbulence in hypersonic turbulence boundary layers. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, FL, AIAA Paper 2009–588 (2009). https://doi.org/10.2514/6.2009-588

  61. Kim, P.: Non-equilibrium effects on hypersonic turbulent boundary layers. PhD thesis, UCLA (2016)

  62. Dunn, M.G., Kang, S.: Theoretical and experimental studies of reentry plasmas. Technical Report, NASA CR-2232 (1973)

  63. Volpiani, P.S., Bernardini, M., Larsson, J.: Effects of a nonadiabatic wall on hypersonic shock/boundary-layer interactions. Phys. Rev. Fluids 5, 014602 (2020). https://doi.org/10.1103/PhysRevFluids.5.014602

    Article  Google Scholar 

  64. Roy, C.J., Blottner, F.G.: Review and assessment of turbulence models for hypersonic flows. Prog. Aerosp. Sci. 42(7–8), 469–530 (2006). https://doi.org/10.1016/j.paerosci.2006.12.002

    Article  Google Scholar 

  65. Hayashi, M., Sakurai, A., Aso, S.: Measurement of heat-transfer coefficients in shock wave-turbulent boundary layer interaction regions with a multi-layered thin film heat transfer gauge. NASA STI/Recon Technical Report N 86 (1986)

  66. Souverein, L.J., Bakker, P.G., Dupont, P.: A scaling analysis for turbulent shock wave/boundarylayer interactions. J. Fluid Mech. 714, 505 (2013). https://doi.org/10.1017/jfm.2012.495

  67. Jaunet, V., Debiève, J.F., Dupont, P.: Length scales and time scales of a heated shock-wave/boundary-layer interaction. AIAA J. 52(11), 2524–2532 (2014). https://doi.org/10.2514/1.J052869

    Article  Google Scholar 

  68. Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202(2), 710–736 (2005). https://doi.org/10.1016/j.jcp.2004.08.003

    Article  MathSciNet  MATH  Google Scholar 

  69. Franzelli, B., Riber, E., Gicquel, L.Y.M., Poinsot, T.: Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159(2), 621–637 (2012). https://doi.org/10.1016/j.combustflame.2011.08.004

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (Grant FA9550-16-1-0385) and performed using HPC resources at the University of Maryland (DeepThought2) and the Maryland Advanced Research Computing Center (MARCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Volpiani.

Additional information

Communicated by C. Goyne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Numerical scheme coefficients

See Tables 4 and 5.

Appendix 2: Thermo-chemistry validation

In order to validate the thermo-chemistry implementation, a mono-dimensional methane-air laminar flame was simulated at equivalence ratio \(\phi =0.83\) and compared with the AVBP solver solution [68]. A two-step reduced chemical mechanism for the methane oxidation presented in [69] was used in both runs:

$$\begin{aligned} \mathrm {CH_4} + 1.5\mathrm {O_2}&\longrightarrow \mathrm {CO} + 2 \mathrm {H_2O} \end{aligned}$$
(42)
$$\begin{aligned} \mathrm {CO}+0.5 \mathrm {O_2}&\longleftrightarrow \mathrm {CO_2} \end{aligned}$$
(43)

The corresponding reaction rates are modeled using Arrhenius laws:

$$\begin{aligned} q_{1}&=A_1 T^{\beta _1}\exp {\left( \frac{-E_\mathrm{a1}}{RT} \right) } \left( \frac{\rho Y_{\mathrm {CH_4}}}{W_{\mathrm {CH_4}}}\right) ^{n_{\mathrm {CH_4}}^1} \left( \frac{\rho Y_{\mathrm {O_2}}}{W_{\mathrm {O_2}}}\right) ^{n_{\mathrm {O_2}}^1} \end{aligned}$$
(44)
$$\begin{aligned} q_{2}&=A_2 T^{\beta _2}\exp {\left( \frac{-E_\mathrm{a2}}{RT} \right) } \left[ \left( \frac{\rho Y_{\mathrm {CO}}}{W_{\mathrm {CO}}}\right) ^{n_{\mathrm {CO}}^2} \left( \frac{\rho Y_{\mathrm {O_2}}}{W_{\mathrm {O_2}}}\right) ^{n_{\mathrm {O_2}}^2} \right. \nonumber \\&\quad \left. -\frac{1}{K_\mathrm{e}} \left( \frac{\rho Y_{\mathrm {CO_2}}}{W_{\mathrm {CO_2}}}\right) ^{n_{\mathrm {CO_2}}^2} \right] \end{aligned}$$
(45)

where pre-exponential factors, activation energies, and model exponents are summarized in Table 6; \(K_\mathrm{e}\) is the equilibrium constant for the second reaction.

The reference viscosity is \(1.8405\times 10^{-4}\) kg/(m\(\cdot \) s), the reference temperature 300 K, and the exponent for the power law 0.6759. The domain of length 1.6 cm was discretized in 400 equally distributed points.

Figure 20 compares the spatial evolution of mass fractions profiles, temperature, and heat capacity at constant pressure with the reference simulation. The agreement is excellent, validating the numerical implementation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpiani, P.S. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium. Shock Waves 31, 361–378 (2021). https://doi.org/10.1007/s00193-021-01018-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01018-6

Keywords

Navigation