Skip to main content
Log in

Efficient Generation of Inflow Conditions for Large Eddy Simulation of Street-Scale Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Using a numerical weather forecasting code to provide the dynamic large-scale inlet boundary conditions for the computation of small-scale urban canopy flows requires a continuous specification of appropriate inlet turbulence. For such computations to be practical, a very efficient method of generating such turbulence is needed. Correlation functions of typical turbulent shear flows have forms not too dissimilar to decaying exponentials. A digital-filter-based generation of turbulent inflow conditions exploiting this fact is presented as a suitable technique for large eddy simulations computation of spatially developing flows. The artificially generated turbulent inflows satisfy the prescribed integral length scales and Reynolds-stress-tensor. The method is much more efficient than, for example, Klein’s (J Comp Phys 186:652–665, 2003) or Kempf et al.’s (Flow Turbulence Combust, 74:67–84, 2005) methods because at every time step only one set of two-dimensional (rather than three-dimensional) random data is filtered to generate a set of two-dimensional data with the appropriate spatial correlations. These data are correlated with the data from the previous time step by using an exponential function based on two weight factors. The method is validated by simulating plane channel flows with smooth walls and flows over arrays of staggered cubes (a generic urban-type flow). Mean velocities, the Reynolds-stress-tensor and spectra are all shown to be comparable with those obtained using classical inlet-outlet periodic boundary conditions. Confidence has been gained in using this method to couple weather scale flows and street scale computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3), 485–492 (2004)

    Article  Google Scholar 

  2. Britter, R.E., Hanna, S.R.: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 35, 469–496 (2003)

    Article  ADS  Google Scholar 

  3. Castro, I.P., Cheng, H., Reynolds, R.: Turbulence over urban-type roughness: deductions from wind tunnel measurements. Bound. Layer Meteorol. 118, 109–131 (2006)

    Article  ADS  Google Scholar 

  4. Collier, C.G.: The impact of urban areas on weather. Q. J. R. Meteorol. Soc. 132, 1–25 (2006)

    Article  ADS  Google Scholar 

  5. di Mare, L., Klein, M., Jones, W.P., Janicka, J.: Synthetic turbulence inflow conditions for large-eddy simulation. Phys. Fluids 18(2), 025107-1-11 (2006)

    Article  ADS  Google Scholar 

  6. Druault, P., Lardeau, S., Bonnet, J.-P., Coiffet, F., Delville, J., Lamballais, E., Largeau, J.F., Perret, L.: Generation of three-Dimensional turbulent inlet conditions for large-eddy simulation. AIAA J. 42(3), 447–456 (2004)

    Article  Google Scholar 

  7. García-Villalba, M., Fröhlich, J., Rodi, W.: On inflow boundary conditions for large eddy simulation of turbulent swirling jets. In: Gutkowski W., Kowalewski T.A. (eds.) Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland. Springer Verlag, New York (2004)

    Google Scholar 

  8. Iwamoto, K.: Database for fully developed channel flow. THTLAB Internal Report (ILR-0201), Dept. Mech. Eng., Univ. Tokyo. DNS database (CH12_PG.WL7). http://www.thtlab.t.u-tokyo.ac.jp/ (2002)

  9. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large eddy simulation. Int. J. Heat Fluid Flow 27(4), 585–593 (2006)

    Article  Google Scholar 

  10. Johansson, P.S., Andersson, H.I.: Generation of inflow data for inhomogeneous turbulence. Theor. Comput. Fluid Dynamics 18(5), 371–389 (2004)

    Article  MATH  ADS  Google Scholar 

  11. Hanna, S.R., Tehranian, S., Carissimo, B., Macdonald, R.W., Lohner, R.: Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos. Environ. 36, 5067–5079 (2002)

    Article  Google Scholar 

  12. Kondo, K., Murakami, S., Mochida, A.: Generation of velocity fluctuations for inflow boundary conditions of LES. J. Wind Eng. Ind. Aerodyn. 67–68, 51C64 (1997)

    Google Scholar 

  13. Keating, A., Piomelli, U., Balaras, E., Kaltenbach, H.-J.: A posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16(12), 4696–4712 (2004)

    Article  ADS  Google Scholar 

  14. Kempf A., Klein, M., Janicka, J.: Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbulence Combust. 74, 67–84 (2005)

    Article  MATH  Google Scholar 

  15. Kim, J., Moin P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  ADS  Google Scholar 

  16. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical simulation or large eddy simulation. J. Comp. Phys. 186, 652–665 (2003)

    Article  MATH  ADS  Google Scholar 

  17. Le, H., Moin, P.: Direct numerical simulation of turbulent flow over a backward-facing step. Tech. Rep. TF-58. Standford University (1994)

  18. Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)

    Article  MATH  ADS  Google Scholar 

  19. Lee, S., Lele, S., Moin, P.: Simulation of spatially evolving compressible turbulence and the application of taylors hypothesis. Phys. Fluids A 4, 1521–1530 (1992)

    Article  MATH  ADS  Google Scholar 

  20. Lund, T., Wu, X., Squires, D.: Generation of turbulent inflow data for spatially developing boundary layer simulation. J. Comp. Phys. 140, 233–258 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Meinders, E.R., Hanjalić, K.: Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Int. J. Heat Fluid Flow 20, 255–267 (1999)

    Article  Google Scholar 

  22. Mordant, N., Metz, P., Michel, O., Pinton, J.-F.: Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87(21), 214501-1-4 (2001)

    Article  ADS  Google Scholar 

  23. Perret, L., Delville, J., Manceau, R., Bonnet, J.P.: Generation of turbulent inflow conditions for large eddy simulation from stereoscopic PIV mearurements. Int. J. Heat Fluid Flow 27(4), 576–584 (2006)

    Article  Google Scholar 

  24. Pope, S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. Sandham, N.D., Yao, Y.F., Lawal, A.A.: Large-eddy simulation of transonic turbulent flow over a bump. Int. J. Heat Fluid Flow 24(4), 584–595 (2003)

    Article  Google Scholar 

  26. Sawford, B.L.: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids 3(6), 1577–1586 (1991)

    Article  ADS  Google Scholar 

  27. Stoesser, T., Mathey, F., Frohlich, J., Rodi, W.: LES of flow over multiple cubes. ERCOFTAC Bull. 56, 15–19 (2003)

    Google Scholar 

  28. Veloudis, I., Yang, Z., McGuirK, J.J., Page, G.J., Spencer, A.: Novel implementation and accessment of a digtial filter based approach for the generation of LES inlet conditions. Flow Turbul. Combust. 79(1), 1–24 (2007)

    Article  Google Scholar 

  29. Xie, Z.-T., Castro, I.P.: LES for flow over urban-like surfaces. Euromech Colloquium 469, Oct. 2005, Dresden, Germany (2005)

  30. Xie, Z.-T., Castro, I.P.: LES and RANS for turbulent flow over arrays of wall-mounted cubes. Flow Turbul. Combust. 76(3), 291–312 (2006)

    Article  Google Scholar 

  31. Xie, Z.-T., Castro, I.P.: Large-eddy simulation for urban micro-meteorologyr. In: Proceedings of the Conference of Global Chinese Scholars on Hydrodynamics, Jul. 2006, Shanghai. J. Hydrodynam. 18(3, Supplement 1), 259–264 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Tong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, ZT., Castro, I.P. Efficient Generation of Inflow Conditions for Large Eddy Simulation of Street-Scale Flows. Flow Turbulence Combust 81, 449–470 (2008). https://doi.org/10.1007/s10494-008-9151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9151-5

Keywords

Navigation