Skip to main content
Log in

Direct numerical simulation of the laminar–turbulent transition at hypersonic flow speeds on a supercomputer

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar–turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier–Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton–Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar–turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar–turbulent transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fedorov, “Transition and stability of high-speed boundary layers,” Annu. Rev. Fluid Mech. 43, 79–95 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. D. Kosinov, N. V. Semionov, S. G. Shevelkov, and O. I. Zinin, “Experiments on the nonlinear instability of supersonic boundary layers,” in Nonlinear Instability of Nonparallel Flows, Ed. by T. Valentine, S. P. Lin, and R. C. Philips (Springer, Berlin, 1994), pp. 196–205.

    Chapter  Google Scholar 

  3. A. D. Kosinov and A. Tumin, “Resonance interaction of wave trains in supersonic boundary layer,” in Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, Ed. by P. W. Duck and P. Hall (Kluwer Academic, Berlin, 1996), pp. 379–388.

    Chapter  Google Scholar 

  4. C. S. J. Mayer and H. F. Fasel, “Investigation of asymmetric subharmonic resonance in a supersonic boundary layer at Mach 2 using DNS,” AIAA Paper, No. 2008-0591 (2008).

    Google Scholar 

  5. D. W. Laddon and S. P. Schneider, “Measurements of controlled wave packets at Mach 4 on a cone at angle of attack,” AIAA Paper, No. 1998-0436 (1998).

    Google Scholar 

  6. A. N. Shiplyuk, D. A. Bountin, A. A. Maslov, and N. Chokani, “Nonlinear mechanisms of the initial stage of the laminar–turbulent transition at hypersonic velocities,” J. Appl. Mech. Tech. Phys. 44 (5), 654–659 (2003).

    Article  Google Scholar 

  7. D. Bountin, A. Shiplyuk, and A. Maslov, “Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone,” J. Fluid Mech. 611, 427–442 (2008).

    Article  MATH  Google Scholar 

  8. K. M. Casper, S. J. Beresh, and S. P. Schneider, “Pressure fluctuations beneath turbulent spots and instability wave packets in a hypersonic boundary layer,” AIAA Paper, No. 2011-372 (2011).

    Google Scholar 

  9. K. Casper, S. Beresh, and S. Schneider, “Characterization of controlled perturbations in a hypersonic boundary layer,” AIAA Paper, No. 2012-281 (2012).

    Google Scholar 

  10. A. Chou and S. P. Schneider, “Time-frequency analysis of boundary layer instabilities generated by free-stream laser perturbations,” AIAA Paper, No. 2015-3076 (2015).

    Google Scholar 

  11. X. Zhong and X. Wang, “Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers,” Annu. Rev. Fluid Mech. 44, 527–561 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. F. Fasel, “Numerical simulation of transition in hypersonic boundary layers,” DTIC Document., No. ADA563832 (2011).

    Google Scholar 

  13. I. V. Yegorov and O. L. Zaitsev, “An approach to the numerical solution of the bidimensional Navier–Stokes equations using the direct calculation method,” USSR Comput. Math. Math. Phys. 31 (2), 80–89 (1991).

    Google Scholar 

  14. I. V. Yegorov and D. V. Ivanov, “The use of fully implicit monotone schemes to model plane internal flows,” Comput. Math. Math. Phys. 36 (12), 1717–1730 (1996).

    MathSciNet  MATH  Google Scholar 

  15. I. V. Egorov, A. V. Fedorov, and V. G. Soudakov, “Direct numerical simulation of supersonic boundary-layer receptivity to acoustic disturbances,” AIAA Paper, No. 2005-97 (2005).

    Google Scholar 

  16. I. V. Egorov, A. V. Fedorov, and V. G. Soudakov, “Direct numerical simulation of disturbances generated by periodic suction-blowing in a hypersonic boundary layer,” Theor. Comput. Fluid Dyn. 20 (1), 41–54 (2006).

    Article  MATH  Google Scholar 

  17. I. V. Egorov, A. V. Novikov, and A. V. Fedorov, “Numerical modeling of the disturbances of the separated flow in a rounded compression corner,” Fluid Dyn. 41 (4), 521–530 (2006).

    Article  MATH  Google Scholar 

  18. I. V. Egorov, A. V. Novikov, and A. V. Fedorov, “Numerical simulation of stabilization of the boundary layer on a surface with a porous coating in a supersonic separated flow,” J. Appl. Mech. Tech. Phys. 48 (2), 176–183 (2007).

    Article  MATH  Google Scholar 

  19. D. Bountin, T. Chimitov, A. Maslov, A. Novikov, I. Egorov, A. Fedorov, and S. Utyuzhnikov, “Stabilization of a hypersonic boundary layer using a wavy surface,” AIAA J. 51 (5), 1203–1210 (2013).

    Article  Google Scholar 

  20. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  21. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43, 357–372 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. S. Jiang and C. W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126, 202–228 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Kh. Karimov, “On some iteration methods for solving nonlinear equations in a Hilbert space,” Dokl. Akad. Nauk SSSR 269 (5), 1038–1046 (1983).

    MathSciNet  Google Scholar 

  24. Y. Saad and M. H. Shultz, “GMRes: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7 (3), 856–869 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Yu. Babaev, V. A. Bashkin, and I. V. Egorov, “Numerical solution of the Navier–Stokes equations using variational iteration methods,” Comput. Math. Math. Phys. 34 (11), 1455–1462 (1994).

    MathSciNet  MATH  Google Scholar 

  26. CFD General Notation System (2016). http://cgns.org/. Accessed November 15, 2016.

  27. S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Web page (2016). http://www.mcs.anl.gov/petsc. Accessed November 15, 2016.

    Google Scholar 

  28. J. Sivasubramanian and H. F. Fasel, “Transition initiated by a localized disturbance in a hypersonic flat-plate boundary layer,” AIAA Paper, No. 2011-374 (2011).

    Google Scholar 

  29. K. J. Franko, R. Bhaskaran, and S. K. Lele, “Direct numerical simulation of transition and heat-transfer overshoot in a Mach 6 flat plate boundary layer,” AIAA Paper, No. 2011-3874 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Novikov.

Additional information

Original Russian Text © I.V. Egorov, A.V. Novikov, A.V. Fedorov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 8, pp. 1347–1376.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, I.V., Novikov, A.V. & Fedorov, A.V. Direct numerical simulation of the laminar–turbulent transition at hypersonic flow speeds on a supercomputer. Comput. Math. and Math. Phys. 57, 1335–1359 (2017). https://doi.org/10.1134/S0965542517080061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517080061

Keywords

Navigation