Skip to main content
Log in

Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction of an oblique shock wave with a turbulent boundary layer under conditions of incipient separation is analyzed by means of large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) turbulence models, with the objective to explore their predictive capabilities, in particular with respect to the unsteady features of the interaction. Consistent with earlier direct numerical simulations, we have found that the flow dynamics in the interaction zone is characterized by strong intermittency associated with the formation of scattered spots of flow reversal near the nominal position of the reflected shock. Comparison with experimental results (at much larger Reynolds number) show that the qualitative features of the interaction are predicted reasonably well by both LES and RANS models. RANS models supplemented with a semi-empirical closure are also found to provide reasonable estimate of the fluctuating pressure loads at the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brusniak L., Dolling D.S.: Engineering estimates of fluctuating loads in shock wave/turbulent boundary layer interactions. AIAA J. 34, 2554–2561 (1996)

    Article  Google Scholar 

  2. Delery, J., Marvin, J.G.: Shock-wave boundary layer interactions. AGARDograph 280 (1986)

  3. Dolling D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next?. AIAA J. 39, 1517–1530 (2001)

    Article  Google Scholar 

  4. Dussauge J.P., Dupont P., Debiève J.F.: Unsteadiness in shock wave boundary layer interactions with separation. Aerosol Sci. Tech. 10, 85–91 (2006)

    Article  Google Scholar 

  5. Fares E., Schröder W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbul. Combust. 73, 187–215 (2004)

    Article  Google Scholar 

  6. Ganapathisubramani B., Clemens N.T., Dolling D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  Google Scholar 

  7. Garnier E., Sagaut P., Deville M.: Large-eddy simulation of shock/boundary-layer interaction. AIAA J. 40(10), 1935–1944 (2002)

    Article  Google Scholar 

  8. Hanjalic K.: Will RANS survive LES? A view of perspectives. J. Fluids Eng. 127, 831–839 (2005)

    Article  Google Scholar 

  9. Inagaki M., Kondoh T., Nagano Y.: A mixed-time-scale sgs model with fixed model-parameters for practical LES. J. Fluids Eng. 127(1), 1–13 (2005)

    Article  Google Scholar 

  10. Lesieur M., Métais O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)

    Article  MathSciNet  Google Scholar 

  11. Li Q., Coleman G.N.: DNS of an oblique shock wave impinging upon a turbulent boundary layer. In: Geurts, B., Friedrich, R., Metais, O. (eds) Direct and large-eddy simulations, ercoftac series, pp. 387–396. Kluwer, Dordrecht (2003)

    Google Scholar 

  12. Pirozzoli S., Grasso F.: Direct numerical simulation of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16(12), 4386–4407 (2004)

    Article  Google Scholar 

  13. Pirozzoli S., Grasso F.: Direct numerical simulation of impinging shock-wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18(6), 1–17 (2006)

    Article  Google Scholar 

  14. Pirozzoli, S., Grasso, F.: Self-sustained oscillations in shock wave/turbulent boundary layer interaction. AIAA Paper 2006-2406 (2006)

  15. Pirozzoli S., Grasso F., Gatski T.B.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16(3), 530–545 (2004)

    Article  Google Scholar 

  16. Sagaut P.: Large-eddy simulation for incompressible flows: an introduction to large-eddy simulations. Springer, Berlin (2001)

    Book  Google Scholar 

  17. Sandham N.D., Yao Y.F., Lawal A.A.: Large-eddy simulation of transonic turbulent flow over a bump. Int. J. Heat Fluid Flow 24(4), 584–595 (2003)

    Article  Google Scholar 

  18. Simpson R.L., Ghodbane M., McGrath B.E.: Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167–186 (1987)

    Article  Google Scholar 

  19. Smits A.J., Dussauge J.P.: Turbulent shear layers in supersonic flow. American Institute of Physics, New York (2006)

    Google Scholar 

  20. Souverein, L., Dupont, P., Debiève, J.F., Dussauge, J.P., van Oudheusden, B.W., Scarano, F.: Unsteadiness characterization in a shock wave turbulent boundary layer interaction through dual-PIV. AIAA Paper 2008-4169 (2008)

  21. Souverein, L.J., van Oudheusden, B.W., Scarano, F., Dupont, P.: Unsteadiness characterization in a shock wave turbulent boundary layer interaction through dual-PIV. AIAA Paper 2008-4169 (2008)

  22. Souverein, L.J., van Oudheusden, B.W., Scarano, F., Dupont, P.: Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas. Sci. Technol. 20, 074,003 (16 pp) (2009)

  23. Spalart P., Allmaras S.: A one-equation turbulence model for aerodynamic flows. Rech. Aérospatiale 1, 5–21 (1994)

    Google Scholar 

  24. Touber, E., Sandham, N.D.: Large-eddy simulation of low- frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. (2009) (accepted)

  25. van Oudheusden B.W.: Principles and application of velocimetry-based planar pressure imaging in compressible flows with shocks. Exp. Fluids 45, 657–674 (2008)

    Article  Google Scholar 

  26. Wilcox D.C.: Turbulence modeling for CFD, 3rd edn. DCW Industries, La Cañada, CA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Pirozzoli.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirozzoli, S., Beer, A., Bernardini, M. et al. Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves 19, 487–497 (2009). https://doi.org/10.1007/s00193-009-0215-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0215-9

Keywords

PACS

Navigation