Gigliobianco G, Roman Regueros S, Osman NI, Bissoli J, Bullock AJ, Chapple CR, MacNeil S (2014) Biomaterials for pelvic floor reconstructive surgery: how can we do better? Biomed Res Int 2015:968087
Google Scholar
Brubaker L, Cundiff GW, Fine P, Nygaard I, Richter HE, Visco AG, Zyczynski H, Brown MB, Weber AM (2006) Abdominal sacrocolpopexy with Burch colposuspension to reduce urinary stress incontinence. N Engl J Med 354:1557–1566
CAS
Article
PubMed
Google Scholar
Kanagarajah P, Ayyathurai R, Gomez C (2012) Evaluation of current synthetic mesh materials in pelvic organ prolapse repair. Curr Urol Rep 13:240–246
Article
PubMed
Google Scholar
Kobashi KC, Leach GE (2000) Pelvic prolapse. J Urol 164:1879–1890
CAS
Article
PubMed
Google Scholar
Margossian H, Walters MD, Falcone T (1999) Laparoscopic management of pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol 85:57–62
CAS
Article
PubMed
Google Scholar
Nygaard IE, Heit M (2004) Stress urinary incontinence. Obstet Gynecol 104:607–620
Article
PubMed
Google Scholar
Burch JC (1961) Urethrovaginal fixation to Cooper’s ligament for correction of stress incontinence, cystocele, and prolapse. Am J Obstet Gynecol 81:281
CAS
Article
PubMed
Google Scholar
Burch JC (2002) Cooper’s ligament urethrovesical suspension for stress incontinence: nine years’ experience-results, complications, techniques. Am J Obstet Gynecol 187:512–513
Article
PubMed
Google Scholar
Krause H, Bennett M, Forwood M, Goh J (2008) Biomechanical properties of raw meshes used in pelvic floor reconstruction. Int Urogynecol J 19:1677–1681
Article
Google Scholar
Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89:501–506
CAS
Article
PubMed
Google Scholar
Stanford EJ, Cassidenti A, Moen MD (2012) Traditional native tissue versus mesh-augmented pelvic organ prolapse repairs: providing an accurate interpretation of current literature. Int Urogynecol J 23:19–28
CAS
Article
PubMed
Google Scholar
Weber AM, Walters MD, Piedmonte MR, Ballard LA (2001) Anterior colporrhaphy: a randomized trial of three surgical techniques. Am J Obstet Gynecol 185:1299–1306
CAS
Article
PubMed
Google Scholar
Barber MD, Brubaker L, Burgio KL, Richter HE, Nygaard I, Weidner AC, Menefee SA, Lukacz ES, Norton P, Schaffer J (2014) Comparison of 2 transvaginal surgical approaches and perioperative behavioral therapy for apical vaginal prolapse: the OPTIMAL randomized trial. JAMA 311:1023–1034
CAS
Article
PubMed
PubMed Central
Google Scholar
Bendavid R (2001) Abdominal wall hernias: principles and management. Springer Science & Business Media, New York
Book
Google Scholar
Abbott S, Unger CA, Evans JM, Jallad K, Mishra K, Karram MM, Iglesia CB, Rardin CR, Barber MD (2014) Evaluation and management of complications from synthetic mesh after pelvic reconstructive surgery: a multicenter study. Am J Obstet Gynecol 210:163
Article
PubMed
Google Scholar
Huber A, McCabe GP, Boruch AV, Medberry C, Honerlaw M, Badylak SF (2012) Polypropylene-containing synthetic mesh devices in soft tissue repair: a meta-analysis. J Biomed Mater Res B Appl Biomater 100:145–154
Article
PubMed
Google Scholar
Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21
Article
Google Scholar
Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 103:208–214
CAS
Article
PubMed
Google Scholar
Mistrangelo E, Mancuso S, Nadalini C, Lijoi D, Costantini S (2007) Rising use of synthetic mesh in transvaginal pelvic reconstructive surgery: a review of the risk of vaginal erosion. J Minim Invasive Gynecol 14:564–569
Article
PubMed
Google Scholar
Amid PK, Shulman AG, Lichtenstein IL, Hakakha M (1994) Biomaterials for abdominal wall hernia surgery and principles of their applications. Langenbecks Arch Surg 379:168–171
CAS
Article
Google Scholar
de Castro Brás LE, Shurey S, Sibbons PD (2012) Evaluation of crosslinked and non-crosslinked biologic prostheses for abdominal hernia repair. Hernia 16:77–89
Article
PubMed
Google Scholar
Fan X, Wang Y, Wang Y, Xu H (2014) Comparison of polypropylene mesh and porcine-derived, cross-linked urinary bladder matrix materials implanted in the rabbit vagina and abdomen. Int Urogynecol J 25:683–689
Article
PubMed
Google Scholar
Nicolo E (2007) “Fatto il polipropilene”: a tribute to Giulio Natta. Hernia 11:385–387
CAS
Article
PubMed
Google Scholar
Read RC (1999) Francis C. Usher, herniologist of the twentieth century. Hernia 3:167–171
Article
Google Scholar
Cobb WS, Kercher KW, Heniford BT (2005) The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 12:63–69
Article
PubMed
Google Scholar
Bilsel Y, Ilker A (2012) The search for ideal hernia repair; mesh materials and types. Int J Surg 10(6):317–321
Article
PubMed
Google Scholar
Skoczylas LC, Shepherd JP, Smith KJ, Lowder JL (2013) Managing mesh exposure following vaginal prolapse repair: a decision analysis comparing conservative versus surgical treatment. Int Urogynecol J 24:119–125
Article
PubMed
Google Scholar
Tinkler JJB (2000) Biological safety & European medical device regulations. Quality First International Press, London
Google Scholar
Van Geelen JM, Dwyer PL (2013) Where to for pelvic organ prolapse treatment after the FDA pronouncements? Int Urogynecol J 24:707–718
Article
PubMed
Google Scholar
Schimpf MO, Rahn DD, Wheeler TL, Patel M, White AB, Orejuela FJ, El-Nashar SA, Margulies RU, Gleason JL, Aschkenazi SO (2014) Sling surgery for stress urinary incontinence in women: a systematic review and metaanalysis. Am J Obstet Gynecol 211:71.e1–71.e27
Article
Google Scholar
Aqil A, Sidiqui M (2012) A critical appraisal of the evidence regarding the choice of common bearing couples available for total hip arthroplasty. J Pak Med Assoc 62:829–834
PubMed
Google Scholar
Williams DF (1987) Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986, 4 edn. Elsevier, Amsterdam
Google Scholar
Moalli P, Brown B, Reitman MT, Nager CW (2014) Polypropylene mesh: evidence for lack of carcinogenicity. Int Urogynecol J 25:573–576
Article
PubMed
PubMed Central
Google Scholar
Mallard BA, Wilkie BN (2007) Phenotypic, genetic and epigenetic variation of immune response and disease resistance traits of pigs. Adv Pork Prod 18:139–146
Google Scholar
Usher FC, Allen JE, Crosthwait RW, Cogan JE (1962) Polypropylene monofilament: a new, biologically inert suture for closing contaminated wounds. JAMA 179:780–782
CAS
Article
PubMed
Google Scholar
Wagner M (1970) Evaluation of diverse plastic and cutis prostheses in a growing host. Surg Gynecol Obstet 130:1077–1081
CAS
PubMed
Google Scholar
Novotný T, Jerábek J, Veselý K, Staffa R, Dvorák M, Cagaš J (2012) Evaluation of a knitted polytetrafluoroethylene mesh placed intraperitoneally in a New Zealand white rabbit model. Surg Endosc 26:1884–1891
Article
PubMed
Google Scholar
Hengirmen S, Cete M, Soran A, Aksoy F, Sencer H, Okay E (1998) Comparison of meshes for the repair of experimental abdominal wall defects. Investig Surg 11:315–325
CAS
Article
Google Scholar
Harrell AG, Novitsky YW, Cristiano JA, Gersin KS, Norton HJ, Kercher KW, Heniford BT (2007) Prospective histologic evaluation of intra-abdominal prosthetics four months after implantation in a rabbit model. Surg Endosc 21:1170–1174
Article
PubMed
Google Scholar
Bleichrodt RP, Simmermacher RK, Van der Lei B, Schakenraad JM (1993) Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet 176:18–24
CAS
PubMed
Google Scholar
De Tayrac R, Gervaise A, Fernandez H (2001) Cystocele repair with a fixation-free prosthetic polypropylene mesh. Int Urogynecol J 12:S92
Google Scholar
Sarsotti C, Lamm M, Testa R (2001) Rectocele repair using a prolene mesh in patients with defecatory outlet obstruction. Int Urogynecol J 12:S82
Google Scholar
Zinther NB, Wara P, Friis-Andersen H (2010) Shrinkage of intraperitoneal onlay mesh in sheep: coated polyester mesh versus covered polypropylene mesh. Hernia 14:611–615
CAS
Article
PubMed
Google Scholar
Orenstein SB, Saberski ER, Kreutzer DL, Novitsky YW (2012) Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J Surg Res 176:423–429
Article
PubMed
Google Scholar
Boulanger L, Boukerrou M, Lambaudie E, Defossez A, Cosson M (2006) Tissue integration and tolerance to meshes used in gynecologic surgery: an experimental study. Eur J Obstet Gynecol Reprod Biol 125:103–108
Article
PubMed
Google Scholar
Byrd JF, Agee N, Nguyen PH, Heath JJ, Lau KN, McKillop IH, Sindram D, Martinie JB, Iannitti DA (2011) Evaluation of composite mesh for ventral hernia repair. JSLS Surg 15:298
Article
Google Scholar
Marcondes W, Herbella FA, Matone J, Odashiro AN, Goldenberg A (2008) Laparoscopic evaluation of abdominal adhesions with different prosthetic meshes in rabbits. JSLS 12:58
PubMed
PubMed Central
Google Scholar
Junge K, Rosch R, Krones CJ, Klinge U, Mertens PR, Lynen P, Schumpelick V, Klosterhalfen B (2005) Influence of polyglecaprone 25 (Monocryl) supplementation on the biocompatibility of a polypropylene mesh for hernia repair. Hernia 9:212–217
CAS
Article
PubMed
Google Scholar
Quininol RM, Araújo-Filho I, LimaIII FP, Barbosa IV ALC (2013) Adhesion prevention in reabsorbable polyethylene glycol hydrogel (Coseal®) coated polypropylene mesh in rabbits. Acta Cir Bras 28:807–814
Article
Google Scholar
Vogels RRM, van Barneveld KWY, Bosmans JWAM, Beets G, Gijbels MJJ, Schreinemacher MHF, Bouvy ND (2015) Long-term evaluation of adhesion formation and foreign body response to three new meshes. Surg Endosc 29:2251–2259
CAS
Article
PubMed
Google Scholar
Scheidbach H, Tamme C, Tannapfel A, Lippert H, Köckerling F (2004) In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs. Surg Endoscop Other Interv Techn 18:211–220
CAS
Article
Google Scholar
Murat Samli M, Demirbas M, Guler C, Aktepe F, Dincel C (2004) Early tissue reactions in the rat bladder wall after contact with three different synthetic mesh materials. BJU Int 93:617–621
Article
PubMed
Google Scholar
Utiyama EM, Rosa MB, Andres Mde, Miranda JS, Damous SH, Birolini CAV, Damous LL, Montero E (2015) Polypropylene and polypropylene/polyglecaprone (Ultrapro®) meshes in the repair of incisional hernia in rats. Acta Cir Bras 30:376–381
Article
PubMed
Google Scholar
Rudnicki M, Laurikainen E, Pogosean R, Kinne I, Jakobsson U, Teleman P (2014) Anterior colporrhaphy compared with collagen-coated transvaginal mesh for anterior vaginal wall prolapse: a randomised controlled trial. BJOG An Int J Obst Gynaecol 121:102–111
CAS
Article
Google Scholar
Huffaker RK, Muir TW, Rao A, Baumann SS, Kuehl TJ, Pierce LM (2008) Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. Am J Obstet Gynecol 198:582.e1–582.e7
Article
Google Scholar
Pierce LM, Asarias JR, Nguyen PT, Mings JR, Gehrich AP (2011) Inflammatory cytokine and matrix metalloproteinase expression induced by collagen-coated and uncoated polypropylene meshes in a rat model. Am J Obstet Gynecol 205:82.e1–82.e9
Article
Google Scholar
Van’t Riet M, Burger JWA, Bonthuis F, Jeekel J, Bonjer HJ (2004) Prevention of adhesion formation to polypropylene mesh by collagen coating: a randomized controlled study in a rat model of ventral hernia repair. Surg Endosc 18:681–685
Article
Google Scholar
Pierce LM, Rao A, Baumann SS, Glassberg JE, Kuehl TJ, Muir TW (2009) Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol 200:546.e1–546.e8
Article
Google Scholar
Endo M, Urbankova I, Vlacil J, Sengupta S, Deprest T, Klosterhalfen B, Feola A, Deprest J (2015) Cross-linked xenogenic collagen implantation in the sheep model for vaginal surgery. Gynecol Surg 12:113–122
Article
PubMed
PubMed Central
Google Scholar
Badylak SF (2014) Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 42:1517–1527
Article
PubMed
Google Scholar
Krambeck AE, Dora CD, Sebo TJ, Rohlinger AL, DiMarco DS, Elliott DS (2006) Time-dependent variations in inflammation and scar formation of six different pubovaginal sling materials in the rabbit model. Urology 67:1105–1110
Article
PubMed
Google Scholar
Christodoulou MG, Papalois A, Mouzakis D, Zaoutsos S, Kouranos T, Seferlis M, Katsifotis C, Liapis A (2013) Dynamic mechanical properties of tissue after long-term implantation of collagen and polypropylene meshes in animal models. OJU 3:155–159
Article
Google Scholar
Shi P, Gao M, Shen Q, Hou L, Zhu Y, Wang J (2015) Biocompatible surgical meshes based on decellularized human amniotic membrane. Mater Sci Eng C Mater Biol Appl. 54:112–119
CAS
Article
PubMed
Google Scholar
De Tayrac R, Chentouf S, Garreau H, Braud C, Guiraud I, Boudeville P, Vert M (2008) In vitro degradation and in vivo biocompatibility of poly (lactic acid) mesh for soft tissue reinforcement in vaginal surgery. J Biomed Mater Res B Appl Biomater 85:529–536
Article
PubMed
Google Scholar
Pans A, Elen P, Dewé W, Desaive C (1998) Long-term results of polyglactin mesh for the prevention of incisional hernias in obese patients. World J Surg 22:479–483
CAS
Article
PubMed
Google Scholar
Lamb JP, Vitale T, Kaminski DL (1983) Comparative evaluation of synthetic meshes used for abdominal wall replacement. Surgery 93:643–648
CAS
PubMed
Google Scholar
Hjort H, Mathisen T, Alves A, Clermont G, Boutrand JP (2012) Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics. Hernia 16:191–197
CAS
Article
PubMed
Google Scholar
De Tayrac R, Oliva-Lauraire MC, Guiraud I, Henry L, Vert M, Mares P (2007) Long-lasting bioresorbable poly (lactic acid)(PLA94) mesh: a new approach for soft tissue reinforcement based on an experimental pilot study. Int Urogynecol J 18:1007–1014
Article
Google Scholar
De Tayrac R, Letouzey V, Garreau H, Guiraud I, Vert M, Mares P (2010) Tissue healing during degradation of a long-lasting bioresorbable gamma-ray-sterilised poly (lactic acid) mesh in the rat: a 12-month study. Eur Surg Res 44:102–110
Article
PubMed
Google Scholar
Conze J, Rosch R, Klinge U, Weiss C, Anurov M, Titkowa S, Oettinger A, Schumpelick V (2004) Polypropylene in the intra-abdominal position: influence of pore size and surface area. Hernia 8:365–372
CAS
Article
PubMed
Google Scholar
Jerabek J, Novotny T, Vesely K, Cagas J, Jedlicka V, Vlcek P, Capov I (2014) Evaluation of three purely polypropylene meshes of different pore sizes in an onlay position in a New Zealand white rabbit model. Hernia 18:855–864
CAS
Article
PubMed
Google Scholar
Junge K, Binnebösel M, Rosch R, Öttinger A, Stumpf M, Mühlenbruch G, Schumpelick V, Klinge U (2008) Influence of mesh materials on the integrity of the vas deferens following Lichtenstein hernioplasty: an experimental model. Hernia 12:621–626
CAS
Article
PubMed
Google Scholar
Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, Moalli P (2013) Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG 120:224–232
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang R, Abramowitch S, Knight K, Palcsey S, Nolfi A, Feola A, Stein S, Moalli PA (2013) Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 120:233–243
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang R, Zong W, Palcsey S, Abramowitch S, Moalli PA (2015) Impact of prolapse meshes on the metabolism of vaginal extracellular matrix in rhesus macaque. Am J Obstet Gynecol 212:174.e1–174.e7
CAS
Article
Google Scholar
Cobb WS, Burns JM, Peindl RD, Carbonell AM, Matthews BD, Kercher KW, Heniford BT (2006) Textile analysis of heavy weight, mid-weight, and light weight polypropylene mesh in a porcine ventral hernia model. J Surg Res 136:1–7
CAS
Article
PubMed
Google Scholar
Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M, Deprest J (2011) Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. Int Urogynecol J 22:1099–1108
Article
PubMed
Google Scholar
Krause HG, Galloway SJ, Khoo SK, Lourie R, Goh JT (2006) Biocompatible properties of surgical mesh using an animal model. Aust New Zeal J Obstet Gynaecol 46:42–45
Article
Google Scholar
Díaz-Godoy A, García-Ureña MA, López-Monclús J, Ruiz VV, Montes DM, Agurto NE (2011) Searching for the best polypropylene mesh to be used in bowel contamination. Hernia 15:173–179
Article
PubMed
Google Scholar
Badiou W, Lavigne JP, Bousquet PJ, O’Callaghan D, Marès P, de Tayrac R (2011) In vitro and in vivo assessment of silver-coated polypropylene mesh to prevent infection in a rat model. Int Urogynecol J 22:265–272
Article
PubMed
Google Scholar
Manodoro S, Endo M, Uvin P, Albersen M, Vlácil J, Engels A, Schmidt B, Ridder D, Feola A, Deprest J (2013) Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG 120:244–250
CAS
Article
PubMed
Google Scholar
Hilger WS, Walter A, Zobitz ME, Leslie KO, Magtibay P, Cornella J (2006) Histological and biomechanical evaluation of implanted graft materials in a rabbit vaginal and abdominal model. Am J Obstet Gynecol 195:1826–1831
Article
PubMed
Google Scholar