Skip to main content
Log in

Polypropylene in the intra-abdominal position: Influence of pore size and surface area

  • Original Article
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Background. Polypropylene is a material widely used in surgery. Because of its association with formation of enterocutaneous fistulae and adhesions, direct contact between mesh and intestine is avoided. The following study was designed to investigate the adhesive potential of different polypropylene meshes when placed in direct contact with intestine. Material and methods. In an established experimental model, a total of 45 chinchilla rabbits underwent laparoscopic placement of meshes with different pore size (Group I: monofilament PP 0.6 mm, Group II: monofilament PP 2.5 mm, Group III: multifilament PP 4.0 mm) with the Intra-Peritoneal-Onlay-Mesh Technique (IPOM). The degree of adhesion formation was measured after 7, 21, and 90 days, evaluated by an adhesion score, quantified by computer-assisted planimetry, followed by histological and morphometric investigation of the perifilamental granuloma formation. Results. The heavyweight, small porous polypropylene meshes (PP 0.6) showed significantly stronger adhesion formation at all intervals of investigation compared with the lightweight meshes with a pore size >2.5 mm. Between the two different lightweight mesh variations, there was no significant difference. Granuloma formation was lowest in large-pore-size monofilament meshes (PP 2.5). Conclusion. The IPOM rabbit model is suitable for investigation of biomaterials in the intra-abdominal position. Our results show that the adhesive potential is significantly influenced by the pore size. However, the extent of the foreign-body reaction seems also to be influenced by the filament structure, respectively, the surface area, favouring monofilament material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Usher F (1962) Hernia repair with Marlex mesh. Arch Surg 84:73–76

    PubMed  Google Scholar 

  2. Ladurner R, Trupka A, Schmidbauer S, Hallfeldt K (2001) The use of an underlay polypropylene mesh in complicated incisional hernias: sucessful French surgical technique. Minerva Chir 56:111–117

    CAS  PubMed  Google Scholar 

  3. McLanahan D, King LT, Weems C, Novotney M, Gibson K (1997) Retrorectus prosthetic mesh repair of midline abdominal hernia. Am J Surg 173:445–449

    Article  CAS  PubMed  Google Scholar 

  4. Wright BE, Niskanen BD, Peterson DJ, Ney AL, Odland MD, VanCamp J, Zera RT, Rodriguez JL (2002) Laparoscopic ventral hernia repair: are there comparative advantages over traditional methods of repair? Am Surg 68:291–295

    PubMed  Google Scholar 

  5. Schumpelick V, Klinge U, Welty G, Klosterhalfen B (1999) Meshes within the abdominal wall. Chirurg 70:876–887

    Article  CAS  PubMed  Google Scholar 

  6. Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21

    Google Scholar 

  7. Amid PK, Shulman AG, Lichtenstein IL, Hakakha M (1994) Biomaterials for abdominal wall hernia surgery and principles of their applications. Langenbecks Arch Chir 379:168–171

    CAS  PubMed  Google Scholar 

  8. Leber KA, Klein GE, Trummer M, Eder HG (1998) Intracranial aneurysms: a review of endovascular and surgical treatment in 248 patients. Minim Invasive Neurosurg 41:81–85

    CAS  PubMed  Google Scholar 

  9. Franklin ME, Dorman JP, Glass JL, Balli JE, Gonzalez JJ (1998) Laparoscopic ventral and incisional hernia repair. Surg Laparosc Endosc 8:294–299

    Article  CAS  PubMed  Google Scholar 

  10. Klein AM, Banever TC (1999) Enterocutaneous fistula as a postoperative complication of laparoscopic inguinal hernia repair. Surg Laparosc Endosc 9:60–62

    Article  CAS  PubMed  Google Scholar 

  11. Miller K, Junger W (1997) Ileocutaneous fistula formation following laparoscopic polypropylene mesh hernia repair. Surg Endosc 11:772–773

    Article  CAS  PubMed  Google Scholar 

  12. Seelig MH, Kasperk R, Tietze L, Schumpelick V (1995) Enterocutaneous fistula after Marlex net implantation. A rare complication after incisional hernia repair. Chirurg 66:739–741

    CAS  PubMed  Google Scholar 

  13. Schumpelick V (2000) [Incisional Hernia]. In: Schumpelick V (ed) Hernien. Thieme Verlag, Stuttgart; New York, pp 266–302

  14. Yelimlies B, Alponat A, Cubukcu A, Kuru M, Oz S, Ercin C, Gonullu N (2003) Carboxymethylcellulose coated on visceral face of polypropylene mesh prevents adhesion without impairing wound healing in incisional hernia model in rats. Hernia 7:130–133

    Article  CAS  PubMed  Google Scholar 

  15. van ‘t RM, de Vos van Steenwijk PJ, Bonthuis F, Marquet RL, Steyerberg EW, Jeekel J, Bonjer HJ (2003) Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. Ann Surg 237:123–128

    PubMed  Google Scholar 

  16. Bendavid R (1997) Composite mesh (polypropylene—ePTFE) in the intraperitoneal position. A report of 30 cases. Hernia 1:5–8

    Google Scholar 

  17. Langer C, Neufang T, Kley C, Schonig KH, Becker H (2001) Standardized sublay technique in polypropylene mesh repair of incisional hernia. A prospective clinical study. Chirurg 72:953–957

    Article  CAS  PubMed  Google Scholar 

  18. Schumpelick V, Stumpt M, Klinge U (2000) [Operations of the abdominal wall (2)]. Zentralbl Chir 125:W73–W81

    CAS  PubMed  Google Scholar 

  19. Schumpelick V, Junge K, Rosch R, Klinge U, Stumpf M (2002) Retromuscular mesh repair for ventral incision hernia in Germany. Chirurg 73:888–894

    Article  CAS  PubMed  Google Scholar 

  20. The Surgical Membrane Study Group (1992) Prophylaxis of pelvic sidewall adhesions with Gore-Tex surgical membrane: a multicenter clinical investigation. Fertil Steril 57:921–923

    PubMed  Google Scholar 

  21. Bellon JM, Contreras LA, Sabater C, Bujan J (1997) Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J.Surg. 21:402–406

    Google Scholar 

  22. Simmermacher RK, Schakenraad JM, Bleichrodt RP (1994) Reherniation after repair of the abdominal wall with expanded polytetrafluoroethylene. J Am Coll Surg 178:613–616

    CAS  PubMed  Google Scholar 

  23. Ben Haim M, Kuriansky J, Tal R, Zmora O, Mintz Y, Rosin D, Ayalon A, Shabtai M (2002) Pitfalls and complications with laparoscopic intraperitoneal expanded polytetrafluoroethylene patch repair of postoperative ventral hernia. Surg Endosc 16:785–788

    Article  CAS  PubMed  Google Scholar 

  24. Flessenkamper I, Muller KM (2001) Biodegradation of a PTFE prosthesis. Zentralbl Chir 126:151–155

    CAS  PubMed  Google Scholar 

  25. Petersen S, Henke G, Freitag M, Faulhaber A, Ludwig K (2001) Deep prosthesis infection in incisional hernia repair: predictive factors and clinical outcome. Eur J Surg 167:453–457

    Article  CAS  PubMed  Google Scholar 

  26. Balen EM, Diez-Caballero A, Hernandez-Lizoain JL, Pardo F, Torramade JR, Regueira FM, Cienfuegos JA (1998) Repair of ventral hernias with expanded polytetrafluoroethylene patch. Br J Surg 85:1415–1418

    Article  CAS  PubMed  Google Scholar 

  27. Schier F, Danzer E, Bondartschuk M (1999) Hyaluronate, tetrachlorodecaoxide, and galactolipid prevent adhesions after implantation of Gore-Tex and dura mater into the abdominal wall in rats. Pediatr Surg Int 15:255–259

    Article  CAS  PubMed  Google Scholar 

  28. Junge K, Klinge U, Rosch R, Klosterhalfen B, Schumpelick V (2002) Functional and morphologic properties of a modified mesh for inguinal hernia repair. World J Surg 26:1472–1480

    Article  PubMed  Google Scholar 

  29. Bellon JM, Bujan J, Contreras LA, Carrera-San Martin A, Jurado F (1996) Comparison of a new type of polytetrafluoroethylene patch (Mycro Mesh) and polypropylene prosthesis (Marlex) for repair of abdominal wall defects. J Am Coll Surg 183:11–18

    CAS  PubMed  Google Scholar 

  30. Kama NA, Coskun T, Yavuz H, Doganay M, Reis E, Akat AZ (1999) Autologous skin graft, human dura mater and polypropylene mesh for the repair of ventral abdominal hernias: an experimental study. Eur J Surg 165:1080–1085

    Article  CAS  PubMed  Google Scholar 

  31. Alimoglu O, Akcakaya A, Sahin M, Unlu Y, Ozkan OV, Sanli E, Eryilmaz R (2003) Prevention of adhesion formations following repair of abdominal wall defects with prosthetic materials (an experimental study). Hepatogastroenterology 50:725–728

    PubMed  Google Scholar 

  32. Baptista ML, Bonsack ME, Delaney JP (2000) Seprafilm reduces adhesions to polypropylene mesh. Surgery 128:86–92

    Article  CAS  PubMed  Google Scholar 

  33. White RA (1988) The effect of porosity and biomaterial on the healing and long-term mechanical properties of vascular prostheses. ASAIO Trans 34:95–100

    CAS  PubMed  Google Scholar 

  34. Junge K, Klinge U, Rosch R, Klosterhalfen B, Schumpelick V (2002) Functional and morphologic properties of a modified mesh for inguinal hernia repair. World J Surg 26:1472–1480

    Article  PubMed  Google Scholar 

  35. Ellis H, Harrison W, Hugh TB (1965) The healing of peritoneum under normal and pathological conditions. Br J Surg 52:471–476

    CAS  PubMed  Google Scholar 

  36. Baptista ML, Bonsack ME, Felemovicius I, Delaney JP (2000) Abdominal adhesions to prosthetic mesh evaluated by laparoscopy and electron microscopy. J Am Coll Surg 190:271–280

    Article  CAS  PubMed  Google Scholar 

  37. Farmer L, Ayoub M, Warejcka D, Southerland S, Freeman A, Solis M (1998) Adhesion formation after intraperitoneal and extraperitoneal implantation of polypropylene mesh. Am Surg 64:144–146

    CAS  PubMed  Google Scholar 

  38. Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V (2002) Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 63:765–771

    Article  CAS  PubMed  Google Scholar 

  39. Klinge U, Klosterhalfen B, Conze J, Limberg W, Obolenski B, Ottinger AP, Schumpelick V (1998) Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Eur J Surg 164:951–960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowlegements

This study was supported by ETHICON in Norderstedt, Germany. The authors thank Mrs. Ellen Krott for her assistance and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Conze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conze, J., Rosch, R., Klinge, U. et al. Polypropylene in the intra-abdominal position: Influence of pore size and surface area. Hernia 8, 365–372 (2004). https://doi.org/10.1007/s10029-004-0268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-004-0268-8

Keywords

Navigation