Skip to main content
Log in

Process characteristics of electrochemical discharge machining and hybrid methods: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract  

Electrochemical discharge machining (ECDM) combines the process characteristics of both electric discharge machining (EDM) and electrochemical machining (ECM). ECDM combines the advantages of both processes to achieve high precision and high surface-quality machining. It has a broad application prospect. This paper briefly introduces the development history of ECDM. The machining mechanism of ECDM is explained. The applications of ECDM machining features are listed, including drilling, milling, turning, cutting, and hybrid machining methods, for process performance enhancement. A comprehensive analysis of the process parameters of ECDM and their impact on process performance is presented. The paper surveys the extensive ECDM research and concludes with a discussion of the future direction of ECDM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References 

  1. Tsai HC, Yan BH, Huang FY (2003) EDM performance of Cr/Cu-based composite electrodes. Int J Mach Tools Manuf 43:245–252. https://doi.org/10.1016/S0890-6955(02)00238-9

    Article  Google Scholar 

  2. Mcgeough JA (1988) Electrodischarge machining advanced methods of machining. Chapman and Hall, London

    Google Scholar 

  3. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  4. Puri AB, Bhattacharyya B (2003) An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int J Mach Tools Manuf 43:151–159. https://doi.org/10.1016/S0890-6955(02)00158-X

    Article  Google Scholar 

  5. Jithin S, Raut A, Bhandarkar UV, Joshi SS (2020) Finite element model for topography prediction of electrical discharge textured surfaces considering multi-discharge phenomenon. Int J Mech Sci 177:105604. https://doi.org/10.1016/j.ijmecsci.2020.105604

    Article  Google Scholar 

  6. Liao YS, Huang JT, Chen YH (2004) A study to achieve a fine surface finish in wire-EDM. J Mater Process Technol 149:165–171. https://doi.org/10.1016/j.jmatprotec.2003.10.034

    Article  Google Scholar 

  7. Narasimhan J, Yu Z, Rajurkar KP (2005) Tool wear compensation and path generation in micro and macro EDM. J Manuf Process 7:75–82. https://doi.org/10.1016/S1526-6125(05)70084-0

    Article  Google Scholar 

  8. Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44:1577–1589

    Article  Google Scholar 

  9. Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49:473–488. https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  10. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26. https://doi.org/10.1016/j.procir.2013.03.002

    Article  Google Scholar 

  11. Sen M, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tools Manuf 45:137–152. https://doi.org/10.1016/j.ijmachtools.2004.08.005

    Article  Google Scholar 

  12. Trimmer AL, Hudson JL, Kock M, Schuster R (2003) Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl Phys Lett 82:3327–3329. https://doi.org/10.1063/1.1576499

    Article  Google Scholar 

  13. Qian S, Zhu D, Qu N et al (2010) Generating micro-dimples array on the hard chrome-coated surface by modified through mask electrochemical micromachining. Int J Adv Manuf Technol 47:1121–1127. https://doi.org/10.1007/s00170-009-2246-x

    Article  Google Scholar 

  14. Nguyen MD, Rahman M, Wong YS (2012) Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water. Int J Mach Tools Manuf 54–55:55–65. https://doi.org/10.1016/j.ijmachtools.2011.11.005

    Article  Google Scholar 

  15. Zhang Y, Xu Z, Zhu D, Xing J (2015) Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution. Int J Mach Tools Manuf 92:10–18. https://doi.org/10.1016/j.ijmachtools.2015.02.011

    Article  Google Scholar 

  16. Goud M, Sharma AK, Jawalkar C (2016) A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precis Eng 45:1–17. https://doi.org/10.1016/j.precisioneng.2016.01.007

    Article  Google Scholar 

  17. Kurafuji H, Suda H (1968) Electrical discharge drilling of glass. CIRP J Manuf Sci Technol 16:1

    Google Scholar 

  18. Bhargav KVJ, Shanthan P, Balaji PS et al (2022) Generation of microholes on GFRP composite using ES-µ-ECDM system. CIRP J Manuf Sci Technol 38:695–705. https://doi.org/10.1016/j.cirpj.2022.06.015

    Article  Google Scholar 

  19. Zhao D, Zhang Z, Zhu H et al (2021) An investigation into laser-assisted electrochemical discharge machining of transparent insulating hard-brittle material. Micromachines 12:1–12. https://doi.org/10.3390/mi12010022

    Article  Google Scholar 

  20. Singh T, Dvivedi A (2016) Developments in electrochemical discharge machining: a review on electrochemical discharge machining, process variants and their hybrid methods. Int J Mach Tools Manuf 105:1–13. https://doi.org/10.1016/j.ijmachtools.2016.03.004

    Article  Google Scholar 

  21. Singh T, Arab J, Dixit P (2022) A review on microholes formation in glass-based substrates by electrochemical discharge drilling for MEMS applications. Mach Sci Technol 26:276–337. https://doi.org/10.1080/10910344.2022.2044857

    Article  Google Scholar 

  22. Kumar N, Mandal N, Das AK (2020) Micro-machining through electrochemical discharge processes: a review. Mater Manuf Process 35:363–404. https://doi.org/10.1080/10426914.2020.1711922

    Article  Google Scholar 

  23. Geng T, Xu Z (2021) Electrochemical discharge machining for fabricating holes in conductive materials: a review. J Adv Manuf Sci Technol 1:1–14. https://doi.org/10.51393/j.jamst.2021006

  24. Silva D (1988) Process developments in electrochemical arc machining. University of edinburgh, Edinburgh

    Google Scholar 

  25. Basak I, Ghosh A (1996) Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification. J Mater Process Technol 62:46–53. https://doi.org/10.1016/0924-0136(95)02202-3

    Article  Google Scholar 

  26. Luiz NE, Machado ÁR (2008) Development trends and review of free-machining steels. Proc Inst Mech Eng Part B J Eng Manuf 222:347–360. https://doi.org/10.1243/09544054JEM861

    Article  Google Scholar 

  27. Wu KL, Lee SM, Chin KH (2014) Application of electrochemical discharge machining to micro-machining of quartz. Adv Mater Res 939:161–168. https://doi.org/10.4028/www.scientific.net/AMR.939.161

    Article  Google Scholar 

  28. Lu C, Gu A, Li M, Yang S (2012) The micro-milling machining of Pyrex glass using the electrochemical discharge machining process. Adv Mater Res 403–408:738–742. https://doi.org/10.4028/www.scientific.net/AMR.403-408.738

    Article  Google Scholar 

  29. Sarkar BR, Doloi B, Bhattacharyya B (2008) Experimental investigation into electrochemical discharge microdrilling on advanced ceramics. Int J Manuf Technol Manag 13:214–225. https://doi.org/10.1504/IJMTM.2008.016772

    Article  Google Scholar 

  30. Coteaţǎ M, Schulze HP, Pop N et al (2011) Machinability of a stainless steel by electrochemical discharge microdrilling. AIP Conf Proc 1353:1356–1360. https://doi.org/10.1063/1.3589705

    Article  Google Scholar 

  31. Khairy ABE, McGeough JA (1990) Die-sinking by electroerosion-dissolution machining. CIRP Ann - Manuf Technol 39:191–195. https://doi.org/10.1016/S0007-8506(07)61033-6

    Article  Google Scholar 

  32. Panda MC, Yadava V (2012) Intelligent modeling and multiobjective optimization of die sinking electrochemical spark machining process. Mater Manuf Process 27:10–25. https://doi.org/10.1080/10426914.2010.544812

    Article  Google Scholar 

  33. Xu Z, Wang Y (2021) Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances. Chinese J Aeronaut 34:28–53. https://doi.org/10.1016/j.cja.2019.09.016

    Article  Google Scholar 

  34. Yurtkuran H (2021) An evaluation on machinability characteristics of titanium and nickel based superalloys used in aerospace industry. İmalat Teknol ve Uygulamaları 2021:10–28

    Article  Google Scholar 

  35. Srinivasan V, Kunjiappan S, Palanisamy P (2021) A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. Int Nano Lett 11:321–345. https://doi.org/10.1007/s40089-021-00328-y

    Article  Google Scholar 

  36. Meng F, Cui Y, Pickering S, McKechnie J (2020) From aviation to aviation: environmental and financial viability of closed-loop recycling of carbon fibre composite. Compos Part B Eng 200:108362. https://doi.org/10.1016/j.compositesb.2020.108362

    Article  Google Scholar 

  37. Yuan SM, Huang YZ, Zhang C, Zhang ZG (2012) Survey of turn-milling and applications in aviation. Adv Mater Res 591–593:385–390. https://doi.org/10.4028/www.scientific.net/AMR.591-593.385

    Article  Google Scholar 

  38. Altin Karataş M, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def Technol 14:318–326. https://doi.org/10.1016/j.dt.2018.02.001

    Article  Google Scholar 

  39. Boissonneau P, Byrne P (2000) Experimental investigation of bubble-induced free convection in a small electrochemical cell. J Appl Electrochem 30:767–775. https://doi.org/10.1023/A:1004034807331

    Article  Google Scholar 

  40. Wüthrich R, Hof LA (2006) The gas film in spark assisted chemical engraving (SACE) - a key element for micro-machining applications. Int J Mach Tools Manuf 46:828–835. https://doi.org/10.1016/j.ijmachtools.2005.07.029

    Article  Google Scholar 

  41. Nguyen MD, Rahman M, Wong YS (2013) Transitions of micro-EDM/SEDCM/micro-ECM milling in low-resistivity deionized water. Int J Mach Tools Manuf 69:48–56. https://doi.org/10.1016/j.ijmachtools.2013.03.008

    Article  Google Scholar 

  42. Singh T, Dvivedi A (2020) On prolongation of discharge regime during ECDM by titrated flow of electrolyte. Int J Adv Manuf Technol 107:1819–1834. https://doi.org/10.1007/s00170-020-05126-y

    Article  Google Scholar 

  43. Wüthrich R, Fujisaki K, Couthy P et al (2005) Spark assisted chemical engraving (SACE) in microfactory. J Micromechanics Microengineering 15:S276. https://doi.org/10.1088/0960-1317/15/10/S04

    Article  Google Scholar 

  44. Jui SK, Kamaraj AB, Sundaram MM (2013) High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM). J Manuf Process 15:460–466. https://doi.org/10.1016/j.jmapro.2013.05.006

    Article  Google Scholar 

  45. Arab J, Mishra DK, Kannojia HK et al (2019) Fabrication of multiple through-holes in non-conductive materials by electrochemical discharge machining for RF MEMS packaging. J Mater Process Technol 271:542–553. https://doi.org/10.1016/j.jmatprotec.2019.04.032

    Article  Google Scholar 

  46. Wang C, Zhang Y, Ji L et al (2021) Improvement of machining accuracy in EDCM by enhanced electrochemical reaming based on a non-metallic backing layer. Chinese J Aeronaut 34:251–264. https://doi.org/10.1016/j.cja.2020.06.019

    Article  Google Scholar 

  47. Kang X, Tang W (2018) Micro-drilling in ceramic-coated Ni-superalloy by electrochemical discharge machining. J Mater Process Technol 255:656–664. https://doi.org/10.1016/j.jmatprotec.2018.01.014

    Article  Google Scholar 

  48. Cao XD, Kim BH, Chu CN (2009) Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis Eng 33:459–465. https://doi.org/10.1016/j.precisioneng.2009.01.001

    Article  Google Scholar 

  49. Nguyen KH, Lee PA, Kim BH (2015) Experimental investigation of ECDM for fabricating micro structures of quartz. Int J Precis Eng Manuf 16:5–12. https://doi.org/10.1007/s12541-015-0001-9

    Article  Google Scholar 

  50. Han M-S, Chae KW, Min B-K (2017) Fabrication of high-aspect-ratio microgrooves using an electrochemical discharge micromilling process. J Micromechanics Microengineering 27:055004. https://doi.org/10.1088/1361-6439/aa64b9

    Article  Google Scholar 

  51. Zeng Z, Wang Y, Wang Z et al (2012) A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures. Precis Eng 36:500–509. https://doi.org/10.1016/j.precisioneng.2012.01.005

    Article  Google Scholar 

  52. Yue X, Ma Y, Qu N, Li H (2023) Experimental investigation of rotary sinking electrochemical discharge milling with high-conductivity salt solution and non-pulsed direct current. Chinese J Aeronaut 36:388–401. https://doi.org/10.1016/j.cja.2022.01.024

    Article  Google Scholar 

  53. Ma Y, Qu N, Yue X, Liu Y (2022) Electrochemical discharge machining grooves without recast layer in 20 wt% NaCl solution. Int J Adv Manuf Technol 121:5413–5425. https://doi.org/10.1007/s00170-022-09722-y

    Article  Google Scholar 

  54. Peng WY, Liao YS (2004) Study of electrochemical discharge machining technology for slicing non-conductive brittle materials. J Mater Process Technol 149:363–369. https://doi.org/10.1016/j.jmatprotec.2003.11.054

    Article  Google Scholar 

  55. Liu JW, Yue TM, Guo ZN (2009) Wire electrochemical discharge machining of Al2O3 particle reinforced aluminum alloy 6061. Mater Manuf Process 24:446–453. https://doi.org/10.1080/10426910802714365

    Article  Google Scholar 

  56. Shamim FA, Dvivedi A, Kumar P (2021) On near-dry wire ECDM of Al6063/SiC/10p MMC. Mater Manuf Process 36:122–134. https://doi.org/10.1080/10426914.2020.1802044

    Article  Google Scholar 

  57. Kuo KY, Wu KL, Yang CK, Yan BH (2013) Wire electrochemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow. Int J Mach Tools Manuf 72:50–57. https://doi.org/10.1016/j.ijmachtools.2013.06.003

    Article  Google Scholar 

  58. Liu Y, Wei Z, Wang M, Zhang J (2017) Experimental investigation of micro wire electrochemical discharge machining by using a rotating helical tool. J Manuf Process 29:265–271. https://doi.org/10.1016/j.jmapro.2017.08.004

    Article  Google Scholar 

  59. Furutani K, Maeda H (2008) Machining a glass rod with a lathe-type electro-chemical discharge machine. J Micromechanics Microengineering 18. https://doi.org/10.1088/0960-1317/18/6/065006

  60. Furutani K, Arai K (2018) Removal mechanism of glass using lathe-type electrochemical discharge machine. Int J Electr Mach 23:1–8. https://doi.org/10.2526/ijem.23.1

    Article  Google Scholar 

  61. Furutani K, Kojima S (2016) Prototyping of acceleration sensor by using lathe-type electro-chemical discharge machine. Procedia CIRP 42:772–777. https://doi.org/10.1016/j.procir.2016.02.317

    Article  Google Scholar 

  62. Ladeesh VG, Manu R (2019) Grinding-aided electrochemical discharge drilling in the light of electrochemistry. Proc Inst Mech Eng Part C J Mech Eng Sci 233:1896–1909. https://doi.org/10.1177/0954406218780129

    Article  Google Scholar 

  63. Ladeesh VG, Manu R (2018) Performance evaluation and multi-response optimization of grinding-aided electrochemical discharge drilling (G-ECDD) of borosilicate glass. J Brazilian Soc Mech Sci Eng 40:1–19. https://doi.org/10.1007/s40430-018-1489-6

    Article  Google Scholar 

  64. Ladeesh VG, Manu R (2021) Grinding aided electrochemical discharge drilling (G-ECDD): a theoretical analysis and mathematical modelling of material removal rate. J Brazilian Soc Mech Sci Eng 43:1–20. https://doi.org/10.1007/s40430-021-03131-0

    Article  Google Scholar 

  65. Cao XD, Kim BH, Chu CN (2013) Hybrid micromachining of glass using ECDM and micro grinding. Int J Precis Eng Manuf 14:5–10. https://doi.org/10.1007/s12541-013-0001-6

    Article  Google Scholar 

  66. Liu J, Lin Z, Yue T et al (2018) An analysis of the tool electrode working mechanism of grinding-aided electrochemical discharge machining of MMCs. Int J Adv Manuf Technol 99:1369–1378. https://doi.org/10.1007/s00170-018-2591-8

    Article  Google Scholar 

  67. Liu J, Huang Q, Wu M et al (2020) Electrochemical discharge grinding of metal matrix composites using shaped abrasive tools formed by sintered bronze/diamond. Sci Eng Compos Mater 27:346–358. https://doi.org/10.1515/secm-2020-0038

    Article  Google Scholar 

  68. Koza JA, Mühlenhoff S, Zabiński P et al (2011) Hydrogen evolution under the influence of a magnetic field. Electrochim Acta 56:2665–2675. https://doi.org/10.1016/j.electacta.2010.12.031

    Article  Google Scholar 

  69. Baczyzmalski D, Karnbach F, Yang X et al (2016) On the electrolyte convection around a hydrogen bubble evolving at a microelectrode under the influence of a magnetic field. J Electrochem Soc 163:E248–E257. https://doi.org/10.1149/2.0381609jes

    Article  Google Scholar 

  70. Sabahi N, Hajian M, Razfar MR (2018) Experimental study on the heat-affected zone of glass substrate machined by electrochemical discharge machining (ECDM) process. Int J Adv Manuf Technol 97:1557–1564. https://doi.org/10.1007/s00170-018-2027-5

    Article  Google Scholar 

  71. Rattan N, Mulik RS (2018) Experimental set up to improve machining performance of silicon dioxide (quartz) in magnetic field assisted TW-ECSM process. SILICON 10:2783–2791. https://doi.org/10.1007/s12633-018-9818-z

    Article  Google Scholar 

  72. Xu Y, Chen J, Jiang B et al (2018) Experimental investigation of magnetohydrodynamic effect in electrochemical discharge machining. Int J Mech Sci 142–143:86–96. https://doi.org/10.1016/j.ijmecsci.2018.04.020

    Article  Google Scholar 

  73. Hajian M, Razfar MR, Movahed S (2016) An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass. Precis Eng 45:322–331. https://doi.org/10.1016/j.precisioneng.2016.03.009

    Article  Google Scholar 

  74. Wüthrich R, Despont B, Maillard P, Bleuler H (2006) Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration. J Micromechanics Microengineering 16:N28. https://doi.org/10.1088/0960-1317/16/11/N03

    Article  Google Scholar 

  75. Elhami S, Razfar MR (2017) Analytical and experimental study on the integration of ultrasonically vibrated tool into the micro electro-chemical discharge drilling. Precis Eng 47:424–433. https://doi.org/10.1016/j.precisioneng.2016.09.015

    Article  Google Scholar 

  76. Jain N, Jain JK (2022) Implementation of tool and electrolyte-based development in the ultrasonic-assisted ECDM process: a review. J Brazilian Soc Mech Sci Eng 44:1–22. https://doi.org/10.1007/s40430-022-03550-7

    Article  Google Scholar 

  77. Elhami S, Razfar MR (2018) Effect of ultrasonic vibration on the single discharge of electrochemical discharge machining. Mater Manuf Process 33:444–451. https://doi.org/10.1080/10426914.2017.1328113

    Article  Google Scholar 

  78. Rathore RS, Dvivedi A (2020) Sonication of tool electrode for utilizing high discharge energy during ECDM. Mater Manuf Process 35:415–429. https://doi.org/10.1080/10426914.2020.1718699

    Article  Google Scholar 

  79. Singh T, Dvivedi A, Shanu A, Dixit P (2021) Experimental investigations of energy channelization behavior in ultrasonic assisted electrochemical discharge machining. J Mater Process Technol 293:117084. https://doi.org/10.1016/j.jmatprotec.2021.117084

    Article  Google Scholar 

  80. Han MS, Min BK, Lee SJ (2007) Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte. J Mater Process Technol 191:224–227. https://doi.org/10.1016/j.jmatprotec.2007.03.004

    Article  Google Scholar 

  81. Kuo KY, Wu KL, Yang CK, Yan BH (2015) Effect of adding SiC powder on surface quality of quartz glass microslit machined by WECDM. Int J Adv Manuf Technol 78:73–83. https://doi.org/10.1007/s00170-014-6602-0

    Article  Google Scholar 

  82. Elhami S, Razfar MR (2020) Application of nano electrolyte in the electrochemical discharge machining process. Precis Eng 64:34–44. https://doi.org/10.1016/j.precisioneng.2020.03.010

    Article  Google Scholar 

  83. Coteaţǎ M, Schulze HP, Slǎtineanu L (2011) Drilling of difficult-to-cut steel by electrochemical discharge machining. Mater Manuf Process 26:1466–1472. https://doi.org/10.1080/10426914.2011.557286

    Article  Google Scholar 

  84. Singh M, Singh S, Kumar S (2020) Investigating the impact of LASER assistance on the accuracy of micro-holes generated in carbon fiber reinforced polymer composite by electrochemical discharge machining. J Manuf Process 60:586–595. https://doi.org/10.1016/j.jmapro.2020.10.056

    Article  Google Scholar 

  85. Liu Z, Yin C, Chen L et al (2014) Efficient combined machining of electrospark-induced controllable combustion and turning dressing for TC4. Mater Manuf Process 29:614–620. https://doi.org/10.1080/10426914.2014.901516

    Article  Google Scholar 

  86. Han Y, Liu Z, Cao Z et al (2018) Mechanism study of the combined process of electrical discharge machining ablation and electrochemical machining in aerosol dielectric. J Mater Process Technol 254:221–228. https://doi.org/10.1016/j.jmatprotec.2017.11.025

    Article  Google Scholar 

  87. Han Y, Liu Z, Qiu M et al (2021) Combined milling of electrical discharge ablation machining and electrochemical machining. Int J Adv Manuf Technol 112:2889–2897. https://doi.org/10.1007/s00170-020-06300-y

    Article  Google Scholar 

  88. Wang D, Li H, Yi L et al (2010) Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J Geophys Res Solid Earth 115:1–10. https://doi.org/10.1029/2009JB006695

    Article  Google Scholar 

  89. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers (Basel) 11:1667. https://doi.org/10.3390/polym11101667

    Article  Google Scholar 

  90. Hassaan MY, Osman HM, Hassan HH et al (2017) Optical and electrical studies of borosilicate glass containing vanadium and cobalt ions for smart windows applications. Ceram Int 43:1795–1801. https://doi.org/10.1016/j.ceramint.2016.10.137

    Article  Google Scholar 

  91. Zaid MHM, Matori KA, Aziz SHA et al (2016) Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. J Non Cryst Solids 449:107–112. https://doi.org/10.1016/j.jnoncrysol.2016.07.020

    Article  Google Scholar 

  92. Lijo P, Somashekhar SH (2014) Effect of process parameters on heat affected zone in micro machining of borosilicate glass using μ-ECDM process. Appl Mech Mater 592–594:224–228. https://doi.org/10.4028/www.scientific.net/AMM.592-594.224

    Article  Google Scholar 

  93. Jain VK, Priyadarshini D (2014) Fabrication of microchannels in ceramics (quartz) using electrochemical spark micromachining (ECSMM). J Adv Manuf Syst 13:5–16. https://doi.org/10.1142/S0219686714500012

    Article  Google Scholar 

  94. Sarkar BR, Doloi B, Bhattacharyya B (2006) Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int J Adv Manuf Technol 28:873–881. https://doi.org/10.1007/s00170-004-2448-1

    Article  Google Scholar 

  95. Vaishya RO, Oza AD, Gupta A (2021) Multiple parameter optimization by wire electrochemical discharge machining process on quartz glass. Springer Singapore, Singapore

    Book  Google Scholar 

  96. Rajput V, Pundir SS, Goud M, Suri NM (2021) Multi-response optimization of ECDM parameters for silica (quartz) using grey relational analysis. SILICON 13:1619–1640. https://doi.org/10.1007/s12633-020-00538-7

    Article  Google Scholar 

  97. Chen L, Li M, Yang X, Li B (2020) Thermal defect characterization and heat conduction modeling during fiber laser cutting carbon fiber reinforced polymer laminates. Arch Civ Mech Eng 20:1–14. https://doi.org/10.1007/s43452-020-00064-8

    Article  Google Scholar 

  98. Han XH, Wang Q, Park YG et al (2012) A review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transf Eng 33:991–1009. https://doi.org/10.1080/01457632.2012.659613

    Article  Google Scholar 

  99. Yue X, Yang X, Tian J et al (2018) Thermal, mechanical and chemical material removal mechanism of carbon fiber reinforced polymers in electrical discharge machining. Int J Mach Tools Manuf 133:4–17. https://doi.org/10.1016/j.ijmachtools.2018.05.004

    Article  Google Scholar 

  100. Wang L, Yu H, Wang K et al (2016) Local fine structural insight into mechanism of electrochemical passivation of titanium. ACS Appl Mater Interfaces 8:18608–18619. https://doi.org/10.1021/acsami.6b05080

    Article  Google Scholar 

  101. Wang D, Zhu Z, Wang N et al (2015) Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution. Electrochim Acta 156:301–307. https://doi.org/10.1016/j.electacta.2014.12.155

    Article  Google Scholar 

  102. Jiang B, Lan S, Ni J, Zhang Z (2014) Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials. J Mater Process Technol 214:892–898. https://doi.org/10.1016/j.jmatprotec.2013.12.005

    Article  Google Scholar 

  103. Yang CK, Wu KL, Hung JC et al (2011) Enhancement of ECDM efficiency and accuracy by spherical tool electrode. Int J Mach Tools Manuf 51:528–535. https://doi.org/10.1016/j.ijmachtools.2011.03.001

    Article  Google Scholar 

  104. Cheng CP, Wu KL, Mai CC, Hsu YS, Yan BH (2010) Magnetic field-assisted electrochemical discharge machining. J Micromechanics Microengineering 20:075019. https://doi.org/10.1088/0960-1317/20/7/075019

    Article  Google Scholar 

  105. Zhang Y, Xu Z, Xing J, Zhu D (2016) Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy. Chinese J Aeronaut 29:1103–1110. https://doi.org/10.1016/j.cja.2015.12.016

    Article  Google Scholar 

  106. Zhang Y, Xu Z, Zhu Y, Zhu D (2016) Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling. J Mater Process Technol 231:38–49. https://doi.org/10.1016/j.jmatprotec.2015.12.012

    Article  Google Scholar 

  107. Zhang Y, Wang C, Wang Y et al (2019) Geometric accuracy improvement by using electrochemical reaming with a helical tube electrode as post-processing for EDM. Materials (Basel) 12:3564. https://doi.org/10.3390/ma12213564

    Article  Google Scholar 

  108. Arab J, Dixit P (2022) Formation of macro-sized through-holes in glass using notch-shaped tubular electrodes in electrochemical discharge machining. J Manuf Process 78:92–106. https://doi.org/10.1016/j.jmapro.2022.03.052

    Article  Google Scholar 

  109. Kong W, Zeng Y, Liu Z et al (2023) Helical wire electrochemical discharge machining on large-thickness Inconel 718 alloy in low-conductivity salt-glycol solution. Chinese J Aeronaut 36:522–533. https://doi.org/10.1016/j.cja.2022.07.007

    Article  Google Scholar 

  110. Yang CK, Cheng CP, Mai CC et al (2010) Effect of surface roughness of tool electrode materials in ECDM performance. Int J Mach Tools Manuf 50:1088–1096. https://doi.org/10.1016/j.ijmachtools.2010.08.006

    Article  Google Scholar 

  111. Charak A, Jawalkar CS (2022) Experimental investigation and analysis on borosilicate glass using electrochemical discharge machining process. SILICON 14:1823–1829. https://doi.org/10.1007/s12633-021-00980-1

    Article  Google Scholar 

  112. Rashedul IM, Zhang Y, Zhou K et al (2021) Influence of different tool electrode materials on electrochemical discharge machining performances. Micromachines 12:1077. https://doi.org/10.3390/mi12091077

    Article  Google Scholar 

  113. Mukund L H, Sachin D W (2018) Effect of different electrolytes on material removal rate, diameter of hole, and spark in electrochemical discharge machining. In: Advances in manufacturing. Springer International Publishing, pp 427–437

  114. Huang SF, Liu Y, Li J et al (2014) Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating. Mater Manuf Process 29:634–637. https://doi.org/10.1080/10426914.2014.901523

    Article  Google Scholar 

  115. Wuthrich R, Jana DAZ (2014) Micromachining using electrochemical discharge phenomenon: fundamentals and applications of spark assisted chemical engraving. William Andrew, Oxford

    Google Scholar 

  116. Kolhekar KR, Sundaram M (2016) A study on the effect of electrolyte concentration on surface integrity in micro electrochemical discharge machining. Procedia CIRP 45:355–358. https://doi.org/10.1016/j.procir.2016.02.146

    Article  Google Scholar 

  117. Singh T, Dvivedi A (2018) On performance evaluation of textured tools during micro-channeling with ECDM. J Manuf Process 32:699–713. https://doi.org/10.1016/j.jmapro.2018.03.033

    Article  Google Scholar 

  118. Harugade M, Waigaonkar S, Mane N (2018) Machining of carbon epoxy composite using high speed electrochemical discharge machining. Mater Today Proc 5:17188–17194. https://doi.org/10.1016/j.matpr.2018.04.128

    Article  Google Scholar 

  119. Zhang Z, Huang L, Jiang Y et al (2016) A study to explore the properties of electrochemical discharge effect based on pulse power supply. Int J Adv Manuf Technol 85:2107–2114. https://doi.org/10.1007/s00170-015-8302-9

    Article  Google Scholar 

  120. Yang CT, Ho SS, Yan BH (2001) Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM). Key Eng Mater 196:149–166. https://doi.org/10.4028/www.scientific.net/kem.196.149

    Article  Google Scholar 

  121. Sabahi N, Razfar MR (2018) Investigating the effect of mixed alkaline electrolyte (NaOH + KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). Int J Adv Manuf Technol 95:643–657. https://doi.org/10.1007/s00170-017-1210-4

    Article  Google Scholar 

  122. Huang S, Zhu D, Zeng Y et al (2011) Micro-hole machined by electrochemical discharge machining (ECDM) with high speed rotating cathode. Adv Mater Res 295–297:1794–1799. https://doi.org/10.4028/www.scientific.net/AMR.295-297.1794

    Article  Google Scholar 

  123. Zhang J, Xu Z, Zhang C (2020) Variable-parameter high-precision electrochemical discharge drilling method for 440C-Nb without recast layer. Int J Adv Manuf Technol 110:2815–2826. https://doi.org/10.1007/s00170-020-05885-8

    Article  Google Scholar 

  124. Kumaravel P, Suresh P, Raja KV, Sekar T (2022) Improvement of micro-electrochemical discharge machining of austenitic stainless steel 316L using NaOH electrolyte containing N2. Int J Electrochem Sci 17:220747. https://doi.org/10.20964/2022.07.53

    Article  Google Scholar 

  125. Wang J, Li W, Yang H et al (2020) Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions. Corros Sci 177:108973. https://doi.org/10.1016/j.corsci.2020.108973

    Article  Google Scholar 

  126. Zhang C, Xu Z, Hang Y, Xing J (2019) Effect of solution conductivity on tool electrode wear in electrochemical discharge drilling of nickel-based alloy. Int J Adv Manuf Technol 103:743–756. https://doi.org/10.1007/s00170-019-03492-w

    Article  Google Scholar 

  127. Zhang C, Xu Z, Zhang X, Zhang J (2020) Surface integrity of holes machined by electrochemical discharge drilling method. CIRP J Manuf Sci Technol 31:643–651. https://doi.org/10.1016/j.cirpj.2020.09.004

    Article  Google Scholar 

  128. Zhang Y, Xu Z, Zhu Y, Zhu D (2016) Machining of a film-cooling hole in a single-crystal superalloy by high-speed electrochemical discharge drilling. Chinese J Aeronaut 29:560–570. https://doi.org/10.1016/j.cja.2015.06.021

    Article  Google Scholar 

  129. Ahmed S, Speidel A, Murray JW et al (2022) Electrolytic-dielectrics: a route to zero recast electrical discharge machining. Int J Mach Tools Manuf 181:103941. https://doi.org/10.1016/j.ijmachtools.2022.103941

    Article  Google Scholar 

  130. Rashid KH, Khadom AA (2020) Sodium sulfite as an oxygen scavenger for the corrosion control of mild steel in petroleum refinery wastewater: optimization, mathematical modeling, surface morphology and reaction kinetics studies. React Kinet Mech Catal 129:1027–1046. https://doi.org/10.1007/s11144-020-01738-3

    Article  Google Scholar 

  131. Liu Y, Qu N (2019) Electrochemical milling of TB6 titanium alloy in NaNO 3 solution. J Electrochem Soc 166:E35–E49. https://doi.org/10.1149/2.1181902jes

    Article  Google Scholar 

  132. Liu W, Ao S, Li Y et al (2017) Effect of anodic behavior on electrochemical machining of TB6 titanium alloy. Electrochim Acta 233:190–200. https://doi.org/10.1016/j.electacta.2017.03.025

    Article  Google Scholar 

  133. Wüthrich R, Hof LA, Lal A et al (2005) Physical principles and miniaturization of spark assisted chemical engraving (SACE). J Micromechanics Microengineering 15:S268. https://doi.org/10.1088/0960-1317/15/10/S03

    Article  Google Scholar 

  134. Laio YS, Wu LC, Peng WY (2013) A study to improve drilling quality of electrochemical discharge machining (ECDM) process. Procedia CIRP 6:609–614. https://doi.org/10.1016/j.procir.2013.03.105

    Article  Google Scholar 

  135. Sabahi N, Razfar MR, Hajian M (2017) Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process. J Mater Process Technol 250:190–202. https://doi.org/10.1016/j.jmatprotec.2017.07.017

    Article  Google Scholar 

  136. Rajput V, Goud M, Suri NM (2020) Performance analysis of ECDM process using surfactant mixed electrolyte. In: Manufacturing engineering. Springer Singapore, Singapore, pp 285–300

  137. Zou Z, Guo Z, Zhang K et al (2022) Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte. J Mater Process Technol 305:117594. https://doi.org/10.1016/j.jmatprotec.2022.117594

    Article  Google Scholar 

  138. Han Z, Fang X, Miao G et al (2023) Controllable electrochemical discharge machining with energy–electricity regulation in glycol-based electrolytes. Int J Mech Sci 247:108161. https://doi.org/10.1016/j.ijmecsci.2023.108161

    Article  Google Scholar 

  139. Arya RK, Dvivedi A (2019) Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process. J Mater Process Technol 266:217–229. https://doi.org/10.1016/j.jmatprotec.2018.10.035

    Article  Google Scholar 

  140. Zhang Y, Xu Z, Xing J, Zhu D (2015) Enhanced machining performance of micro holes using electrochemical discharge machining with super-high-pressure interior flushing. Int J Electrochem Sci 10:8465–8483

    Article  Google Scholar 

  141. Li C, Zhang B, Li Y et al (2018) Self-adjusting EDM/ECM high speed drilling of film cooling holes. J Mater Process Technol 262:95–103. https://doi.org/10.1016/j.jmatprotec.2018.06.026

    Article  Google Scholar 

  142. Geng T, Xu Z, Lu J et al (2022) A novel backflushing method for improving machining quality in electrochemical discharge drilling. J Manuf Process 82:516–529. https://doi.org/10.1016/j.jmapro.2022.08.011

    Article  Google Scholar 

  143. Zhang C, Xu Z, Lu J, Geng T (2021) An electrochemical discharge drilling method utilising a compound flow field of different fluids. J Mater Process Technol 298:117306. https://doi.org/10.1016/j.jmatprotec.2021.117306

    Article  Google Scholar 

  144. Chak SK, Venkateswara Rao P (2007) Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply. Int J Mach Tools Manuf 47:2061–2070. https://doi.org/10.1016/j.ijmachtools.2007.05.009

    Article  Google Scholar 

  145. Wang Y, Xu Z, Zhang A (2019) Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions. Corros Sci 157:357–369. https://doi.org/10.1016/j.corsci.2019.06.010

    Article  Google Scholar 

  146. Tang L, Guo YF (2013) Experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition. Mater Manuf Process 28:457–462. https://doi.org/10.1080/10426914.2012.746784

    Article  Google Scholar 

  147. Tokura H, Kondoh I, Yoshikswa M (1989) Ceramic material processing by electrical discharge in electrolyte. J Mater Sci 24:991–998. https://doi.org/10.1007/BF01148788

    Article  Google Scholar 

  148. Jain VK, Choudhury SK, Ramesh KM (2002) On the machining of alumina and glass. Int J Mach Tools Manuf 42:1269–1276. https://doi.org/10.1016/S0032-3861(02)00241-0

    Article  Google Scholar 

  149. Paul L, Korah LV (2016) Effect of power source in ECDM process with FEM modeling. Procedia Technol 25:1175–1181. https://doi.org/10.1016/j.protcy.2016.08.236

    Article  Google Scholar 

  150. Chen YJ, Sundaram M (2022) A study on the sparking distance in the electrochemical discharging process. J Manuf Process 75:826–832. https://doi.org/10.1016/j.jmapro.2022.01.048

    Article  Google Scholar 

  151. Han W, Kunieda M (2019) A novel method to switch machining mode between micro-ECM and micro-EDM using oxide film on surface of tungsten electrode. Precis Eng 56:455–465. https://doi.org/10.1016/j.precisioneng.2019.02.002

    Article  Google Scholar 

  152. Zhan S, Zhao Y (2020) Plasma-assisted electrochemical machining of microtools and microstructures. Int J Mach Tools Manuf 156:103596. https://doi.org/10.1016/j.ijmachtools.2020.103596

    Article  Google Scholar 

  153. Zhang Y, Xu Z, Wang Y et al (2020) Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses. Chinese J Aeronaut 33:2782–2793. https://doi.org/10.1016/j.cja.2019.09.003

    Article  Google Scholar 

  154. Geng T, Xu Z, Zhang C, NING J, (2023) Breakthrough detection in electrochemical discharge drilling to enhance machining stability. Chinese J Aeronaut 36:460–475. https://doi.org/10.1016/j.cja.2022.09.023

    Article  Google Scholar 

  155. Ghosh A (1997) Electrochemical discharge machining: principle and possibilities. Sadhana - Acad Proc Eng Sci 22:435–447. https://doi.org/10.1007/BF02744482

    Article  Google Scholar 

  156. Sharma P, Arab J, Dixit P (2021) Through-holes micromachining of alumina using a combined pulse-feed approach in ECDM. Mater Manuf Process 36:1501–1512. https://doi.org/10.1080/10426914.2021.1905835

    Article  Google Scholar 

  157. Kim DJ, Ahn Y, Lee SH, Kim YK (2006) Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int J Mach Tools Manuf 46:1064–1067. https://doi.org/10.1016/j.ijmachtools.2005.08.011

    Article  Google Scholar 

  158. Singh T, Mishra DK, Dixit P (2022) Effect of pulse frequency and duty cycle on electrochemical dissolution behavior of multi-tip array tool electrode for reusability in the ECDM process. J Appl Electrochem 52:667–682. https://doi.org/10.1007/s10800-021-01662-x

    Article  Google Scholar 

  159. Saini G (2021) A Taguchi approach to optimize electrochemical discharge machining of E-glass fibre reinforced polymer composite. In: Advances in engineering materials. Springer Singapore, Singapore, pp 567–578

  160. Garg MP, Singh M, Singh S (2019) Micro-machining and process optimization of electrochemical discharge machining (ECDM) process by GRA method. In: International scientific-technical conference MANUFACTURING. Springer International Publishing 384–392

  161. Singh M, Singh S (2019) Micro-machining and process optimization of electrochemical discharge machining (ECDM) process by TOPSIS method. In: International scientific-technical conference MANUFACTURING. Springer International Publishing 206–215

  162. Priti SM, Singh S (2021) Micro-Machining of CFRP composite using electrochemical discharge machining and process optimization by entropy-VIKOR method. Mater Today Proc 44:260–265. https://doi.org/10.1016/j.matpr.2020.09.463

    Article  Google Scholar 

  163. Antil P (2020) Modelling and multi-objective optimization during ECDM of silicon carbide reinforced epoxy composites. SILICON 12:275–288. https://doi.org/10.1007/s12633-019-00122-8

    Article  Google Scholar 

  164. Manoharan V, Tamilperuvalathan S (2022) Prediction on enhanced electrochemical discharge machining behaviors of zirconia-silicon nitride using hybrid DNN based spotted hyena optimization. Int J Energy Res 46:9221–9241. https://doi.org/10.1002/er.7797

    Article  Google Scholar 

  165. Antil P, Singh S, Manna A (2020) Experimental investigation during electrochemical discharge machining (ECDM) of hybrid polymer matrix composites. Iran J Sci Technol - Trans Mech Eng 44:813–824. https://doi.org/10.1007/s40997-019-00280-5

    Article  Google Scholar 

  166. Ranganayakulu J, Srihari PV, Rao KV (2022) An optimization strategy to improve performance in electrochemical discharge machining of borosilicate glass using graph theory algorithm and desirability index. SILICON 14:5241–5254. https://doi.org/10.1007/s12633-021-01317-8

    Article  Google Scholar 

  167. Gautam N, Jain VK (1998) Experimental investigations into ECSD process using various tool kinematics. Int J Mach Tools Manuf 38:15–27. https://doi.org/10.1016/S0890-6955(98)00034-0

    Article  Google Scholar 

  168. Singh T, Dvivedi A (2022) Impact of gas film thickness on the performance of RM-ECDM process during machining of glass. Mater Manuf Process 37:652–663. https://doi.org/10.1080/10426914.2021.1945092

    Article  Google Scholar 

  169. Bhargav KVJ, Balaji PS, Sahu RK, Katiyar JK (2022) Exemplary approach using tool rotation-assisted µ-ECDM for CFRP composites machining. Mater Manuf Process 00:1–13. https://doi.org/10.1080/10426914.2022.2072879

    Article  Google Scholar 

  170. Wüthrich R, Spaelter U, Wu Y, Bleuler H (2006) A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE). J Micromechanics Microengineering 16:1891–1896. https://doi.org/10.1088/0960-1317/16/9/019

    Article  Google Scholar 

  171. Xu Y, Chen J, Jiang B, Ni J (2018) Investigation of micro-drilling using electrochemical discharge machining with counter resistant feeding. J Mater Process Technol 257:141–147. https://doi.org/10.1016/j.jmatprotec.2018.02.023

    Article  Google Scholar 

  172. Skrabalak G, Zybura-Skrabalak M, Ruszaj A (2004) Building of rules base for fuzzy-logic control of the ECDM process. J Mater Process Technol 149:530–535. https://doi.org/10.1016/j.jmatprotec.2003.11.058

    Article  Google Scholar 

  173. Arab J, Dixit P (2020) Influence of tool electrode feed rate in the electrochemical discharge drilling of a glass substrate. Mater Manuf Process 35:1749–1760. https://doi.org/10.1080/10426914.2020.1784936

    Article  Google Scholar 

  174. Singh T, Dvivedi A (2019) Experimental investigations on the effect of energy interaction durations during micro-channeling with ECDM. Advances in micro and nano manufacturing and surface engineering. Springer Singapore, Singapore, pp 269–277

    Chapter  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of China (52265060 and 52265061) and the Postgraduate Research Innovation Project in the Autonomous Region (XJ2022G012).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shengsheng Zhang, Jianping Zhou, Guoyu Hu, Lizhong Wang, and Yan Xu. The first draft of the manuscript was written by Shengsheng Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianping Zhou or Lizhong Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhou, J., Hu, G. et al. Process characteristics of electrochemical discharge machining and hybrid methods: a review. Int J Adv Manuf Technol 129, 1933–1963 (2023). https://doi.org/10.1007/s00170-023-12452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12452-4

Keywords

Navigation