Skip to main content
Log in

Residual stresses in ultrasonic vibration assistance turning cemented carbide

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The special mechanical properties of cemented carbide with many excellent properties such as high modulus of elasticity, hardness, and strength will cause complex stress distribution due to excessive force and heat in the process of precision manufacturing, which will affect precision retention and endurance limit. Given excessive force and heat distribution and the conflict between brittleness and strength, ultrasonic elliptical vibration turning (UEVT) technique has become an irreplaceable method to machining cemented carbide. However, the addition of elliptical vibration changes the force and heat during cutting, which makes the influence on the residual stress of cemented carbide complicated. Therefore, based on the kinematic characteristics of turning carbide endface, an equivalent three-dimensional simulation model of thermo-mechanical coupling is established. It is found that the simulation models can predict residual stress with high accuracy. Ultrasonic-assisted vibration machining can effectively improve surface residual stresses, thus improving the quality of the machined surface. With the increase of cutting velocity, the duty ratio of cutting increases, and the surface residual stress has a decreasing trend; with the increase of ultrasonic amplitude, the duty ratio of cutting decreases, and the residual stress on the surface tends to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mao C, Liang C, Zhang Y, Zhang M, Hu Y, Bi Z (2017) Grinding characteristics of cBN-WC-10Co composites. Ceram Int 43:16539–16547. https://doi.org/10.1016/j.ceramint.2017.09.040

    Article  CAS  Google Scholar 

  2. Mao C, Lu J, Zhao Z, Yin L, Hu Y, Bi Z (2018) Simulation and experiment of cutting characteristics for single cBN-WC-10Co fiber. Precis Eng 52:170–182. https://doi.org/10.1016/j.precisioneng.2017.12.001

    Article  Google Scholar 

  3. Wang K, Yang X, Chou K, Zhang G (2021) A facile route to prepare ODS WC Co cemented carbides. Int J Refract Met Hard Mater 98:105569. https://doi.org/10.1016/j.ijrmhm.2021.105569

    Article  CAS  Google Scholar 

  4. Cai H, Jing W, Guo S, Liu L, Ye Y, Wen Y, Wu Y et al (2021) Effects of micro/nano CeO2 on the microstructure and properties of WC-10Co cemented carbides. Int J Refract Met Hard Mater 95:105432. https://doi.org/10.1016/j.ijrmhm.2020.105432

    Article  CAS  Google Scholar 

  5. Bergs T, Müller U, Barth S, Ohlert M (2021) Experimental analysis on vibratory finishing of cemented carbides. Manuf Lett 28:21–24. https://doi.org/10.1016/j.mfglet.2021.02.004

    Article  Google Scholar 

  6. Polini R, Marcucci A, Ottavi CD, Nunziante P, De Filippis P, Marcheselli G (2021) Toward greener synthesis of WC powders for cemented tungsten carbides manufacturing. ACS Sustain Chem Eng 9:8458–8466. https://doi.org/10.1021/acssuschemeng.1c01286

    Article  CAS  Google Scholar 

  7. Nikitin AV, Tarikov IY, Vasilkov DV (2019) Determination of technological residual stresses in the surface layer of parts with thin-walled elements during turning. IOP conference series. Mater Sci Eng 666:12024. https://doi.org/10.1088/1757-899X/666/1/012024

    Article  CAS  Google Scholar 

  8. Javadi H, Jomaa W, Dalgaard E, Brochu M, Bocher P (2018) Influence of surface residual stresses on the fatigue life and crack propagation behavior of turned Inconel 718 super-alloy. MATEC Web Conf 165:18004. https://doi.org/10.1051/matecconf/201816518004

    Article  CAS  Google Scholar 

  9. Hirobe S, Imakita K, Aizawa H, Kato Y, Urata S, Oguni K (2021) Simulation of catastrophic failure in a residual stress field. Phys Rev Lett 127:64301. https://doi.org/10.1103/PhysRevLett.127.064301

    Article  MathSciNet  CAS  Google Scholar 

  10. Zhang CY, Wang GC, Pei HJ (2004) Effect of characteristics of the grinding wheel on cemented carbide cutting tool sharpening. Key Eng Mater 259–260:50–54. https://doi.org/10.4028/www.scientific.net/KEM.259-260.50

    Article  Google Scholar 

  11. Wu Q, Li B, Ouyang Z, Mao G, Wan L (2021) Precision grinding of cemented carbides based on a multi-layer brazed diamond wheel using an electrolyte containing carbon nanotubes. Int J Adv Manuf Technol 114(9):2899–2909. https://doi.org/10.1007/s00170-021-07044-z

    Article  Google Scholar 

  12. Jia D, Li C, Zhang Y, Yang M, Zhang X, Li R, Ji H (2019) Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. Int J Adv Manuf Technol 100:457–473. https://doi.org/10.1007/s00170-018-2718-y

    Article  Google Scholar 

  13. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H et al (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45:14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226

    Article  CAS  Google Scholar 

  14. Oliveira JFG, Silva EJ, Guo C, Hashimoto F (2009) Industrial challenges in grinding. CIRP Ann 58:663–680. https://doi.org/10.1016/j.cirp.2009.09.006

    Article  Google Scholar 

  15. Zhu D, Feng X, Xu X, Yang Z, Li W, Yan S, Ding H (2020) Robotic grinding of complex components: a step towards efficient and intelligent machining – challenges, solutions, and applications. Robot Comput-Integr Manuf 65:101908. https://doi.org/10.1016/j.rcim.2019.101908

    Article  Google Scholar 

  16. Yang Z, Zhu L, Zhang G, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594. https://doi.org/10.1016/j.ijmachtools.2020.103594

    Article  Google Scholar 

  17. O’Toole L, Kang C, Fang F (2020) Advances in rotary ultrasonic-assisted machining. Nanomanuf Metrol 3:1–25. https://doi.org/10.1007/s41871-019-00053-3

    Article  CAS  Google Scholar 

  18. Liu G, Xiang D, Peng P, Li Y, Yuan Z, Zhang Z, Gao G, Zhao B (2022) Establishment of scratching force model for micro-removal of SiCp/Al composites by ultrasonic vibration. J Mater Process Technol 307:117677. https://doi.org/10.1016/j.jmatprotec.2022.117677

    Article  CAS  Google Scholar 

  19. Lu Z, Zhang D, Zhang X, Peng Z (2020) Effects of high-pressure coolant on cutting performance of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol 279:116584. https://doi.org/10.1016/j.jmatprotec.2019.116584

    Article  CAS  Google Scholar 

  20. Kang D, Zou P, Wu H, Duan J, Wang W (2019) Study on ultrasonic vibration–assisted cutting of Nomex honeycomb cores. Int J Adv Manuf Technol 104:979–992. https://doi.org/10.1007/s00170-019-03883-z

    Article  Google Scholar 

  21. Qi H, Qin S, Cheng Z, Zou Z, Cai D, Wen D (2021) DEM and experimental study on the ultrasonic vibration-assisted abrasive finishing of WC-8Co cemented carbide cutting edge. Powder Technol 378:716–723. https://doi.org/10.1016/j.powtec.2020.10.043

    Article  CAS  Google Scholar 

  22. Teimouri R, Amini S, Bami AB (2018) Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Measurement 116:129–139. https://doi.org/10.1016/j.measurement.2017.11.001

    Article  Google Scholar 

  23. Sharma V, Pandey PM (2016) Recent advances in ultrasonic assisted turning: a step towards sustainability. Cogent Eng 3:1222776. https://doi.org/10.1080/23311916.2016.1222776

    Article  Google Scholar 

  24. McCLUNG RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct 30:173–205. https://doi.org/10.1111/j.1460-2695.2007.01102.x

    Article  Google Scholar 

  25. Elsheikh AH, Shanmugan S, Muthuramalingam T, Thakur AK, Essa FA (2022) A comprehensive review on residual stresses in turning. Adv Manuf 10(2):287–312. https://doi.org/10.1007/s40436-021-00371-0

    Article  Google Scholar 

  26. Sharma V, Pandey PM (2016) Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel. Ultrasonics 70:172–182. https://doi.org/10.1016/j.ultras.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  27. Smith DJ, Farrahi GH, Zhu WX, McMahon CA (2001) Experimental measurement and finite element simulation of the interaction between residual stresses and mechanical loading. Int J Fatigue 23:293–302. https://doi.org/10.1016/S0142-1123(00)00104-3

    Article  CAS  Google Scholar 

  28. Dong P, Song S, Zhang J (2014) Analysis of residual stress relief mechanisms in post-weld heat treatment. Int J Press Vessels Pip 122:6–14. https://doi.org/10.1016/j.ijpvp.2014.06.002

    Article  Google Scholar 

  29. Yaghi AH, Hyde TH, Becker AA, Sun W (2008) Finite element simulation of welding and residual stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment. J Strain Anal Eng Des 43:275–293. https://doi.org/10.1243/03093247JSA372

    Article  Google Scholar 

  30. Shao Y, Fergani O, Li B, Liang SY (2016) Residual stress modeling in minimum quantity lubrication grinding. Int J Adv Manuf Technol 83:743–751. https://doi.org/10.1007/s00170-015-7527-y

    Article  Google Scholar 

  31. Wan M, Ye X, Wen D, Zhang WH (2019) Modeling of machining-induced residual stresses. J Mater Sci 54:1–35. https://doi.org/10.1007/s10853-018-2808-0

    Article  CAS  Google Scholar 

  32. Levkulich NC, Semiatin SL, Gockel JE, Middendorf JR, DeWald AT, Klingbeil NW (2019) The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit Manuf 28:475–484. https://doi.org/10.1016/j.addma.2019.05.015

    Article  CAS  Google Scholar 

  33. Wu Q, Wu J, Zhang YD, Gao HJ, Hui D (2019) Analysis and homogenization of residual stress in aerospace ring rolling process of 2219 aluminum alloy using thermal stress relief method[J]. Int J Mech Sci 157:111–118. https://doi.org/10.1016/j.ijmecsci.2019.04.040

    Article  Google Scholar 

  34. Li J, Wang S (2017) Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances. Int J Adv Manuf Technol 89:997–1012. https://doi.org/10.1007/s00170-016-9066-6

    Article  Google Scholar 

  35. Thornton HR, Henriksen M (1979) The effect of load rate on the fatigue life of graphite/epoxy composites. SAMPE Q 10:1–5. https://doi.org/10.1016/0010-4361(80)90410-3

    Article  CAS  Google Scholar 

  36. Liu H, Zheng J, Guo Y, Zhu L (2020) Residual stresses in high-speed two-dimensional ultrasonic rolling 7050 aluminum alloy with thermal-mechanical coupling. Int J Mech Sci 186:105824. https://doi.org/10.1016/j.ijmecsci.2020.105824

    Article  Google Scholar 

  37. Navas VG, Sandá A, Sanz C, Fernández D, Vleugels J, Vanmeensel K, Fernández A (2015) Surface integrity of rotary ultrasonic machined ZrO2–TiN and Al2O3–TiC–SiC ceramics. J Eur Ceram Soc 35:3927–3941. https://doi.org/10.1016/j.jeurceramsoc.2015.06.018

    Article  CAS  Google Scholar 

  38. Ganiev M, Gafurov I, Vagapov I. (2015) Impact Vibrations of Ultrasonic Multi-striker Hand Tool[C]//Vibration Engineering and Technology of Machinery: Proceedings of VETOMAC X 2014, held at the University of Manchester, UK, September 9–11, 2014. Springer International Publishing 2015: 243–252. https://doi.org/10.1007/978-3-319-09918-7_21

  39. Zhang Z, Sui M, Li C, Zhou Z, Liu B, Chen Y, Said Z et al (2022) Residual stress of grinding cemented carbide using MoS2 nano-lubricant. Int J Adv Manuf Technol 119:5671–5685. https://doi.org/10.1007/s00170-022-08660-z

    Article  Google Scholar 

  40. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y et al (2017) (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. Int J Mach Tools Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  41. Yin Q, Li C, Dong L, Bai X, Zhang Y, Yang M, Jia D et al (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Precis Eng Manuf-Green Technol 8:1629–1647. https://doi.org/10.1007/s40684-021-00318-7

    Article  Google Scholar 

  42. Wang X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, Yang M et al (2022) Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int J Adv Manuf Technol 119:631–646. https://doi.org/10.1007/s00170-021-08235-4

    Article  Google Scholar 

  43. Zhang C, Jiao F (2020) Tool wear in laser ultrasonically combined turning of tungsten carbide with PCD tools. Int J Adv Manuf Technol 111:2201–2213. https://doi.org/10.1007/s00170-020-06260-3

    Article  Google Scholar 

  44. Jiao F, Zhang M, Niu Y (2019) Optimization of tungsten carbide processing parameters for laser heating and ultrasonic vibration composite assisted cutting. Proc Inst Mech Eng C J Mech Eng Sci 233:4140–4153. https://doi.org/10.1177/0954406218809123

    Article  CAS  Google Scholar 

  45. Zhang J, Wang D (2019) Investigations of tangential ultrasonic vibration turning of Ti6Al4V using finite element method. IntJ Mater Form 12:257–267. https://doi.org/10.1007/s12289-018-1402-y

    Article  Google Scholar 

  46. Wu S, Wei L, Guo G, Zhang S, Li C, Chen M, Wang D (2022) Study on the mechanism of AL2024-T351/Ti-6Al-4V laminated materials by ultrasonic vibration drilling. Arch Civ Mech Eng 22(4):161. https://doi.org/10.1007/s43452-022-00482-w

    Article  Google Scholar 

  47. Khajehzadeh M, Boostanipour O, Razfar MR (2020) Finite element simulation and experimental investigation of residual stresses in ultrasonic assisted turning. Ultrasonics 108:106208. https://doi.org/10.1016/j.ultras.2020.106208

    Article  PubMed  Google Scholar 

  48. Salman KH, Elsheikh AH, Ashham M, Ali MKA, Rashad M, Haiou Z. (2019) Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J Braz Soc Mech Sci Eng 41:1–12. https://doi.org/10.1007/s40430-019-1846-0

  49. Kartheek G, Srinivas K, Devaraj C (2018) Optimization of residual stresses in hard turning of super alloy Inconel 718. Mater Today : Proc 5:4592–4600. https://doi.org/10.1016/j.matpr.2017.12.029

    Article  Google Scholar 

  50. Ying N, Feng J, Bo Z (2020) A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling. Int J Adv Manuf Technol 106:385–400. https://doi.org/10.1007/s00170-019-04636-8

    Article  Google Scholar 

  51. Jiao F, Niu Y, Zhang M (2018) Prediction of machining dimension in laser heating and ultrasonic vibration composite assisted cutting of tungsten carbide. J Adv Manuf Syst 17:35–45. https://doi.org/10.1142/S0219686718500038

    Article  Google Scholar 

  52. Zhao B, Guo X, Bie W, Chang B, Zhao C (2020) Thermo-mechanical coupling effect on surface residual stress during ultrasonic vibration-assisted forming grinding gear. J Manuf Process 59:19–32. https://doi.org/10.1016/j.jmapro.2020.09.041

    Article  Google Scholar 

  53. Wan L, Li L, Deng Z, Deng Z, Liu W (2019) Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics. J Manuf Process 47:41–51. https://doi.org/10.1016/j.jmapro.2019.09.024

    Article  Google Scholar 

  54. Alinaghian I, Amini S, Honarpisheh M (2018) Residual stress, tensile strength, and macrostructure investigations on ultrasonic assisted friction stir welding of AA 6061–T6. J Strain Anal Eng Des 53:494–503. https://doi.org/10.1177/0309324718789768

    Article  Google Scholar 

  55. Wang Y, Su H, Dai J, Yang S (2019) A novel finite element method for the wear analysis of cemented carbide tool during high speed cutting Ti6Al4V process. Int J Adv Manuf Technol 103:2795–2807. https://doi.org/10.1007/s00170-019-03776-1

    Article  Google Scholar 

  56. Schubert A, Nestler A, Mehner T (2012) Influencing the residual stresses in the surface layer by use of appropriate cutting parameters and tool geometries in turning of aluminium matrix composites. Materialwiss Werkstofftech 43:648–655. https://doi.org/10.1002/mawe.201200012

    Article  CAS  Google Scholar 

  57. Zong WJ, Li D, Cheng K, Sun T, Liang YC (2007) Finite element optimization of diamond tool geometry and cutting-process parameters based on surface residual stresses. Int J Adv Manuf Technol 32:666–674. https://doi.org/10.1007/s00170-005-0388-z

    Article  Google Scholar 

Download references

Funding

The authors received support from the National Natural Science Foundation of China (No. 51675164).

Author information

Authors and Affiliations

Authors

Contributions

All related authors contributed to the conceptualization, data curation, investigation, methodology, writing—original draft, writing—review, and editing of the manuscript.

Corresponding author

Correspondence to Mingjun Zhang.

Ethics declarations

Ethics approval

This paper is new. Neither the entire paper nor any part of its content has been published or has been accepted elsewhere. It is not being submitted to any other journal as well.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, X., Jiao, F. et al. Residual stresses in ultrasonic vibration assistance turning cemented carbide. Int J Adv Manuf Technol 131, 2235–2245 (2024). https://doi.org/10.1007/s00170-023-11077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11077-x

Keywords

Navigation