Skip to main content
Log in

A comprehensive review on residual stresses in turning

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

Residual stresses induced during turning processes can affect the quality and performance of machined products, depending on its direction and magnitude. Residual stresses can be highly detrimental as they can lead to creeping, fatigue, and stress corrosion cracking. The final state of residual stresses in a workpiece depends on its material as well as the cutting-tool configuration such as tool geometry/coating, cooling and wear conditions, and process parameters including the cutting speed, depth-of-cut and feed-rate. However, there have been disagreements in some literatures regarding influences of the above-mentioned factors on residual stresses due to different cutting conditions, tool parameters and workpiece materials used in the specific investigations. This review paper categorizes different methods in experimental, numerical and analytical approaches employed for determining induced residual stresses and their relationships with cutting conditions in a turning process. Discussion is presented for the effects of different cutting conditions and parameters on the final residual stresses state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Totten GE (2002) Handbook of residual stress and deformation of steel. ASM International

  2. Fetullazade E, Akyildiz HK, Saritas S (2010) Effects of the machining conditions on the strain hardening and the residual stresses at the roots of screw threads. Mater Des 31(4):2025–2031

    Article  Google Scholar 

  3. Huang XD, Zhang XM, Ding H (2016) A novel relaxation-free analytical method for prediction of residual stress induced by mechanical load during orthogonal machining. Int J Mech Sci 115/116:299–309

  4. Salman Kh, Elsheikh AH, Ashham M et al (2019) Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J Bra Soc Mech Sci Eng 41(8):349. https://doi.org/10.1007/s40430-019-1846-0

    Article  Google Scholar 

  5. Park MK, Sindhu RA, Lee SJ et al (2009) A residual stress evaluation in laser welded lap joint with hole drilling method. Int J Precis Eng Manu 10(5):89–95

    Article  Google Scholar 

  6. Elsheikh AH, Guo J, Bai K et al (2020) Improving clamping accuracy of thin-walled workpiece in turning operation. IOP Conf Ser Mater Sci Eng 751:012080. https://doi.org/10.1088/1757-899X/751/1/012080

    Article  Google Scholar 

  7. Al-Huniti NS, AlNimr MA, Da’as MA (2004) Transient variations of thermal stresses and the resulting residual stresses within a thin plate during welding processes. J Thermal Stress 27(8):671–689

    Article  Google Scholar 

  8. Bang HS, Park CS, Bang HS (2017) Structural analysis of automotive cowl parts considering welding residual stress. Int J Precis Eng Manu 18:729–737

    Article  Google Scholar 

  9. Xia J, Jin H (2018) Numerical analysis for controlling residual stresses in welding design of dissimilar materials girth joints. Int J Precis Eng Manu 19(1):57–66

    Article  Google Scholar 

  10. Wu Q, Li DP, Zhang YD (2016) Detecting milling deformation in 7075 aluminum alloy aeronautical monolithic components using the quasi-symmetric machining method. Metals 6(4):80. https://doi.org/10.3390/met6040080

    Article  Google Scholar 

  11. Javidi A, Rieger U, Eichlseder W (2008) The effect of machining on the surface integrity and fatigue life. Int J Fatigue 30(10/11):2050–2055

    Article  Google Scholar 

  12. Sticchi M, Schnubel D, Kashaev N et al (2014) Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Appl Mech Rev 67(1):010801. https://doi.org/10.1115/1.4028160

    Article  Google Scholar 

  13. Javadi H, Jomaa W, Songmene V et al (2019) Inconel 718 superalloy controlled surface integrity for fatigue applications produced by precision turning. Int J Precis Eng Manu 20:1297–1310

    Article  Google Scholar 

  14. Choi Y (2019) Effects of cutting speed on surface integrity and fatigue performance of hard machined surfaces. Int J Precis Eng Manu 20:139–146

    Article  Google Scholar 

  15. Dai W, Li C, He D et al (2019) Mechanism of residual stress and surface roughness of substrate on fatigue behavior of micro-arc oxidation coated AA7075-T6 alloy. Surf Coat Technol 380:125014. https://doi.org/10.1016/j.surfcoat.2019.125014

    Article  Google Scholar 

  16. Masmiati N, Sarhan AAD, Hassan MAN et al (2016) Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement 86:253–265

    Article  Google Scholar 

  17. Martín V, Vázquez J, Navarro C et al (2020) Effect of shot peening residual stresses and surface roughness on fretting fatigue strength of Al 7075–T651. Tribol Int 142:106004. https://doi.org/10.1016/j.triboint.2019.106004

    Article  Google Scholar 

  18. Sakai T, Nakagawa A, Oguma N et al (2016) A review on fatigue fracture modes of structural metallic materials in very high cycle regime. Int J Fatig 93:339–351

    Article  Google Scholar 

  19. Algarni M, Choi Y, Bai Y (2017) A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718. Int J Fatig 96:162–177

    Article  Google Scholar 

  20. Dong Y, Li J, Ren Y et al (2020) Laser-assisted cyclic chipless splitting for hard-to-cut thick wall tubes and fatigue fracture mechanism analysis. Int J Mech Sci 168:105308. https://doi.org/10.1016/j.ijmecsci.2019.105308

    Article  Google Scholar 

  21. Liu CR, Yang X (2001) The scatter of surface residual stresses produced by face-turning and grinding. Mach Sci Technol 5(1):1–21

    Article  Google Scholar 

  22. Nowag L, Sölter J, Brinksmeier E (2007) Influence of turning parameters on distortion of bearing rings. Prod Eng Res Dev 1(2):135–139

    Article  Google Scholar 

  23. Yazdani Nezhad H, O’Dowd NP (2015) Creep relaxation in the presence of residual stress. Eng Fract Mech 138:250–264

    Article  Google Scholar 

  24. Savaria V, Bridier F, Bocher P (2016) Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int J Fatigue 85:70–84

    Article  Google Scholar 

  25. Ghosh S, Rana VPS, Kain V et al (2011) Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des 32(7):3823–3831

    Article  Google Scholar 

  26. Wang Y, Han X, Liu Y et al (2014) Effect of residual stress on corrosion sensitivity of carbon steel studied by SECM. Chem Res Chin Univ 30(6):1022–1027

    Article  Google Scholar 

  27. Reed EC, Viens JA (1960) The influence of surface residual stress on fatigue limit of titanium. J Eng Ind 82(1):76–78

    Article  Google Scholar 

  28. Henriksen EK (1951) Residual stresses in machined surfaces. Trans ASME 73:69–76

    Google Scholar 

  29. Zong WJ, Sun T, Li D et al (2006) FEM optimization of tool geometry based on the machined near surface’s residual stresses generated in diamond turning. J Mater Process Technol 180(1/3):271–278

    Article  Google Scholar 

  30. Nespor D, Denkena B, Grove T et al (2015) Differences and similarities between the induced residual stresses after ball end milling and orthogonal cutting of Ti-6Al-4V. J Mater Process Technol 226:15–24

    Article  Google Scholar 

  31. Alipooramirabad H, Paradowska A, Ghomashchi R et al (2015) Quantification of residual stresses in multi-pass welds using neutron diffraction. J Mater Process Technol 226:40–49

    Article  Google Scholar 

  32. Hosseini A, Kishawy HA, Moetakef-Imani B (2016) Effects of broaching operations on the integrity of machined surface. Proc CIRP 45:163–166

    Article  Google Scholar 

  33. Buj-Corral I, Vivancos-Calvet J, Setien I et al (2017) Residual stresses induced by honing processes on hardened steel cylinders. Int J Adv Manuf Technol 88(5):2321–2329

    Article  Google Scholar 

  34. Zhang XX, Wang D, Xiao BL et al (2017) Enhanced multiscale modeling of macroscopic and microscopic residual stresses evolution during multi-thermo-mechanical processes. Mater Des 115:364–378

    Article  Google Scholar 

  35. Wang Z, Denlinger E, Michaleris P et al (2017) Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions. Mater Des 113:169–177

    Article  Google Scholar 

  36. Devarajan N, Asundi MK, Somasundaram S (1984) Experimental method for predicting residual stresses due to turning in stainless steel. Exp Tech 8(8):22–26

    Article  Google Scholar 

  37. Huang X, Sun J, Li J et al (2013) An experimental investigation of residual stresses in high-speed end milling 7050-T7451 aluminum alloy. Adv Mech Eng 5:592659. https://doi.org/10.1155/2013/592659

    Article  Google Scholar 

  38. Longhui M, Ning H, Yinfei Y et al (2015) Measurement of surface residual stresses generated by turning thin-wall Ti6Al4V tubes using different cutting parameters. Rare Met Mater Eng 44(10):2381–2386

    Article  Google Scholar 

  39. Umapathi A, Swaroop S (2019) Measurement of residual stresses in titanium alloys using synchrotron radiation. Measurement 140:518–525

    Article  Google Scholar 

  40. Chang KH, Lee CH (2008) Finite element analysis of the residual stresses in T-joint fillet welds made of similar and dissimilar steels. Int J Adv Manuf Technol 41:250. https://doi.org/10.1007/s00170-008-1487-4

    Article  Google Scholar 

  41. Li JL, Jing LL, Chen M (2009) An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J Mater Process Technol 209(9):4515–4520

    Article  Google Scholar 

  42. Murugan N, Narayanan R (2009) Finite element simulation of residual stresses and their measurement by contour method. Mater Des 30(6):2067–2071

    Article  Google Scholar 

  43. Salahshoor M, Guo YB (2014) Finite element simulation and experimental validation of residual stresses in high speed dry milling of biodegradable magnesium-calcium alloys. Int J Mech Sci 80:153–159

    Article  Google Scholar 

  44. Yang D, Liu Z, Ren X et al (2016) Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V. Int J Mech Sci 108/109:29–38

  45. Kouadri-Henni A, Seang C, Malard B et al (2017) Residual stresses induced by laser welding process in the case of a dual-phase steel DP600: simulation and experimental approaches. Mater Des 123(5):89–102

    Article  Google Scholar 

  46. Dalewski R, Jachimowicz J, Pietrzakowski M (2010) Simulations of residual stresses in resistance spot welding process. J Thermal Stress 33(9):843–857

    Article  Google Scholar 

  47. Rocha D’ Oliveira AL, Rego RR, de Faria AR (2019) Residual stresses prediction in machining: hybrid FEM enhanced by assessment of plastic flow. J Mater Process Technol 275:116332. https://doi.org/10.1016/j.jmatprotec.2019.116332

    Article  Google Scholar 

  48. Wu Q, Wu J, Zhang YD et al (2019) Analysis and homogenization of residual stress in aerospace ring rolling process of 2219 aluminum alloy using thermal stress relief method. Int J Mech Sci 157/158:111–118

    Article  Google Scholar 

  49. Franchim AS, Campos VSD, Travessa DN et al (2009) Analytical modelling for residual stresses produced by shot peening. Mater Des 30(5):1556–1560

    Article  Google Scholar 

  50. Brunel F, Brunel JF, Dufrénoy P et al (2013) Prediction of the initial residual stresses in railway wheels induced by manufacturing. J Thermal Stress 36(1):37–55

    Article  Google Scholar 

  51. Elsheikh AH, Guo J, Lee KM (2019) Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source. J Thermal Stress 42(3):361–373

    Article  Google Scholar 

  52. Miguélez MH, Zaera R, Molinari A et al (2009) Residual stresses in orthogonal cutting of metals: the effect of thermomechanical coupling parameters and of friction. J Thermal Stress 32(3):269–289

    Article  Google Scholar 

  53. Abdelhamid T, Elsheikh AH, Elazab A et al (2018) Simultaneous reconstruction of the time-dependent Robin coefficient and heat flux in heat conduction problems. Inverse Probl Sci Eng 26(9):1231–1248

    Article  MathSciNet  MATH  Google Scholar 

  54. Arrazola PJ, Kortabarria A, Madariaga A et al (2014) On the machining induced residual stresses in IN718 nickel-based alloy: experiments and predictions with finite element simulation. Simul Model Pract Theory 41:87–103

    Article  Google Scholar 

  55. Sherafatnia K, Farrahi GH, Mahmoudi AH et al (2016) Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior. Mat Sci Eng A 657:309–321

    Article  Google Scholar 

  56. Mahmoudi AH, Ghasemi A, Farrahi GH et al (2016) A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening. Mater Des 90:478–487

    Article  Google Scholar 

  57. Sebastiani M, Sui T, Korsunsky AM (2017) Residual stress evaluation at the micro- and nano-scale: recent advancements of measurement techniques, validation through modelling, and future challenges. Mater Des 118:204–206

    Article  Google Scholar 

  58. Ghasemi AR, Mohammadi MM (2016) Residual stress measurement of fiber metal laminates using incremental hole-drilling technique in consideration of the integral method. Int J Mech Sci 114:246–256

    Article  Google Scholar 

  59. Bouffioux C, Pesci R, Boman R et al (2016) Comparison of residual stresses on long rolled profiles measured by X-ray diffraction, ring core and the sectioning methods and simulated by FE method. Thin-Walled Struct 104:126–134

    Article  Google Scholar 

  60. James MN, Newby M, Doubell P et al (2014) Weld residual stresses near the bimetallic interface in clad RPV steel: a comparison between deep-hole drilling and neutron diffraction data. Nucl Eng Des 274:56–65

    Article  Google Scholar 

  61. Gadallah R, Tsutsumi S, Hiraoka K et al (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253

    Article  Google Scholar 

  62. Sun Y, Luzin V, Daniel WJT et al (2017) Development of the slope cutting method for determining the residual stresses in roll formed products. Measurement 100:26–35

    Article  Google Scholar 

  63. Beghini M, Loffredo M, Monelli BD et al (2018) Residual stress measurements in an autofrettaged cylinder through the initial strain distribution method. Int J Press Vessels Pip 168:87–93

    Article  Google Scholar 

  64. Neubert S, Pittner A, Rethmeier M (2016) Numerical sensitivity analysis of TRIP-parameter K on weld residual stresses for steel S355J2+ N. J Thermal Stress 39(2):201–219

    Article  Google Scholar 

  65. Foadian F, Carradó A, Pirling T et al (2016) Residual stresses evolution in Cu tubes, cold drawn with tilted dies – Neutron diffraction measurements and finite element simulation. Mater Des 107:163–170

    Article  Google Scholar 

  66. Lee HH, Gangwar KD, Park KT et al (2017) Neutron diffraction and finite element analysis of the residual stress distribution of copper processed by equal-channel angular pressing. Mater Sci Eng A 682:691–697

    Article  Google Scholar 

  67. Agrawal S, Joshi SS (2013) Analytical modelling of residual stresses in orthogonal machining of AISI4340 steel. J Manuf Process 15(1):167–179

    Article  Google Scholar 

  68. Barash MM, Schoech WJ (1970) A semi-analytical model of the residual stress zone in orthogonal machining. In: Proceedings of the 11th international machine tool design and research conference, pp 603–613

  69. Lazoglu I, Ulutan D, Alaca BE et al (2008) An enhanced analytical model for residual stress prediction in machining. CIRP Ann Manuf Technol 57(1):81–84

    Article  Google Scholar 

  70. Ulutan D, Erdem Alaca B, Lazoglu l (2007) Analytical modelling of residual stresses in machining. J Mater Process Technol 183(1):77–87

    Article  Google Scholar 

  71. Outeiro JC, Umbrello D, M’Saoubi R (2006) Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int J Mach Tools Manuf 46(14):1786–1794

    Article  Google Scholar 

  72. Jacobus K, DeVor RE, Kapoor SG (1999) Machining-induced residual stress: experimentation and modeling. J Manuf Sci Eng 122(1):20–31

    Article  Google Scholar 

  73. Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann Manuf Technol 61(1):547–550

    Article  Google Scholar 

  74. Kundrák J, Mamalis AG, Szabó G et al (2016) Numerical examination of residual stresses developing during hard turning at different rake angles. Int J Adv Manuf Technol 89:1989–1999

    Article  Google Scholar 

  75. Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int J Mech Sci 42:1069–1086

    Article  MATH  Google Scholar 

  76. Sharman ARC, Hughes JI, Ridgway K (2015) The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718TM. J Mater Process Technol 216:123–132

    Article  Google Scholar 

  77. Leppert T, Peng RL (2012) Residual stresses in surface layer after dry and MQL turning of AISI 316L steel. Prod Eng Res Dev 6(4):367–374

    Article  Google Scholar 

  78. Berruti T, Lavella M, Gola MM (2009) Residual stresses on Inconel 718 turbine shaft samples after turning. Mach Sci Technol 13(4):543–560

    Article  Google Scholar 

  79. Cakir MC, Sik IY (2005) Finite element analysis of cutting tools prior to fracture in hard turning operations. Mater Des 26(2):105–112

  80. Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147(2):181–184

    Article  Google Scholar 

  81. Zhang XP, Gao E, Richard LC (2009) Optimization of process parameter of residual stresses for hard turned surfaces. J Mater Process Technol 209(9):4286–4291

    Article  Google Scholar 

  82. Warren AW, Guo YB (2009) Characteristics of residual stress profiles in hard turned versus ground surfaces with and without a white layer. ASME 2008 international manufacturing science and engineering conference collocated with the 3rd JSME/ASME international conference on materials and processing, October 7–10, 2008, Evanston, Illinois, USA, pp 387–396

  83. Liu CR, Mittal S (1996) Single-step superfinish hard machining: feasibility and feasible cutting conditions. Robot Comput Integr Manuf 12(1):15–27

    Article  Google Scholar 

  84. Saini S, Ahuja IS, Sharma VS (2012) Residual stresses, surface roughness, and tool wear in hard turning: a comprehensive review. Mater Manuf Process 27(6):583–598

    Article  Google Scholar 

  85. Dixit US, Joshi SN, Davim JP (2011) Incorporation of material behavior in modeling of metal forming and machining processes: a review. Mater Des 32(7):3655–3670

    Article  Google Scholar 

  86. Vomacka P, Walburger H (2000) Residual stresses due to hard-machining—Industrial experiences. Materials Science Form 347/349:592–597

  87. König W, Berktold A, Koch KF (1993) Turning versus grinding—a comparison of surface integrity aspects and attainable accuracies. CIRP Ann Manuf Technol 42(1):39–43

    Article  Google Scholar 

  88. Gunnberg F, Escursell M, Jacobson M (2006) The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel. J Mater Process Technol 174(1/3):82–90

    Article  Google Scholar 

  89. Elsheikh AH, Guo J, Huang Y et al (2018) Temperature field sensing of a thin-wall component during machining: numerical and experimental investigations. J Heat Mass Transf 126:935–945

    Article  Google Scholar 

  90. Ravichandran KS (1995) Thermal residual stresses in a functionally graded material system. Mater Sci Eng A 201(1):269–276

    Article  Google Scholar 

  91. Withers PJ, Bhadeshia HKDH (2001) Residual stress. Part 2 – nature and origins. Mater Sci Technol 17(4):366–375

    Article  Google Scholar 

  92. Wyatt JE, Berry JT (2006) A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes. J Mater Process Technol 171(1):132–140

    Article  Google Scholar 

  93. Navas VG, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tool Manuf 61:48–57

    Article  Google Scholar 

  94. Hosseini SB, Beno T, Klement U et al (2014) Cutting temperatures during hard turning—measurements and effects on white layer formation in AISI 52100. J Mater Process Technol 214(6):1293–1300

    Article  Google Scholar 

  95. Wei H, Chen Yl YuW et al (2020) Determination of the macroscopic residual stress: modeling and experimental evaluation of texture and local grain-interaction. Mater Charact 169:110609. https://doi.org/10.1016/j.matchar.2020.110609

    Article  Google Scholar 

  96. Schajer GS, Ruud CO (2013) Overview of residual stresses and their measurement. Practical residual stress measurement methods. Wiley, Hoboken, pp 1–27

    Google Scholar 

  97. Lu J, James M, Roy AG et al (1996) Handbook of measurement of residual stresses. Fairmont Press, USA

    Google Scholar 

  98. Rossini NS, Dassisti M, Benyounis KY et al (2012) Methods of measuring residual stresses in components. Mater Des 35:572–588

    Article  Google Scholar 

  99. Shin YC, Oh SJ, Ruud CO (1991) Interrogation of residual stresses of machined surface by an X-ray diffraction technique. In: Ruud CO, Bussière JF, Green RE (eds) Nondestructive characterization of materials IV, Springer, US, Boston, MA, pp 409–418

    Chapter  Google Scholar 

  100. Martins COD, Strohaecker TR, Rocha AS et al (2005) Application of X-ray diffraction, micromagnetic and hole drilling methods for residual stress determination in a ball bearing steel ring. Exp Mech 45(4):344–350

    Article  Google Scholar 

  101. Yilbas BS, Akhtar SS, Karatas C (2013) Laser cutting of alumina tiles: heating and stress analysis. J Manuf Process 15(1):14–24

    Article  Google Scholar 

  102. Moussaoui K, Segonds S, Rubio W et al (2016) Studying the measurement by X-ray diffraction of residual stresses in Ti6Al4V titanium alloy. Mater Sci Eng A 667:340–348

    Article  Google Scholar 

  103. Barile C, Casavola C, Pappalettera G et al (2014) Remarks on residual stress measurement by hole-drilling and electronic speckle pattern interferometry. Sci World J 2014:487149. https://doi.org/10.1155/2014/487149

    Article  Google Scholar 

  104. Outeiro JC, Dias AM, Jawahir IS (2006) On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations. CIRP Ann Manuf Technol 55(1):111–116

    Article  Google Scholar 

  105. Caruso S, Umbrello D, Outeiro JC et al (2011) An experimental investigation of residual stresses in hard machining of AISI 52100 steel. Proc Eng 19:67–72

    Article  Google Scholar 

  106. Jang DY, Watkins TR, Kozaczek KJ et al (1996) Surface residual stresses in machined austenitic stainless steel. Wear 194(1):168–173

    Article  Google Scholar 

  107. Tsuchida K, Kawada Y, Kodama S (1975) A study on the residual stress distributions by turning. Bull JSME 18:123–130

    Article  Google Scholar 

  108. Liu M, Ji T, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241

    Article  Google Scholar 

  109. Capello E, Davoli P, Bassanini G et al (1999) Residual stresses and surface roughness in turning. J Eng Mater Technol 121(3):346–351

    Article  Google Scholar 

  110. Li W, Withers PJ, Axinte D et al (2009) Residual stresses in face finish turning of high strength nickel-based superalloy. J Mater Process Technol 209(10):4896–4902

    Article  Google Scholar 

  111. Madariaga A, Kortabarria A, Hormaetxe E et al (2016) Influence of tool wear on residual stresses when turning Inconel 718. Proc CIRP 45:267–270

    Article  Google Scholar 

  112. Abboud E, Attia H, Shi B et al (2016) Residual stresses and surface integrity of Ti-alloys during finish turning—guidelines for compressive residual stresses. Proc CIRP 45:55–58

    Article  Google Scholar 

  113. Capello E (2005) Residual stresses in turning: part I: influence of process parameters. J Mater Process Technol 160(2):221–228

    Article  Google Scholar 

  114. Capello E (2006) Residual stresses in turning: part II. Influence of the machined material. J Mater Process Technol 172(3):319–326

    Article  Google Scholar 

  115. Saini S, Ahuja IS, Sharma VS (2013) Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int J Adv Manuf Technol 65(5):667–678

    Article  Google Scholar 

  116. Yu XX, Lau WS, Lee TC (1997) A finite element analysis of residual stresses in stretch turning. Int J Mach Tools Manuf 37(10):1525–1537

    Article  Google Scholar 

  117. Qin MY, Ye BY, Jia X et al (2013) Experimental investigation of residual stress distribution in pre-stress cutting. Int J Adv Manuf Technol 65(1):355–361

    Google Scholar 

  118. da Silva LR, Couto DA, dos Santo FV et al (2020) Evaluation of machined surface of the hardened AISI 4340 steel through roughness and residual stress parameters in turning and grinding. Int J Adv Manuf Technol 107(1):791–803

    Article  Google Scholar 

  119. Sharman ARC, Hughes JI, Ridgway K (2006) An analysis of the residual stresses generated in Inconel 718TM when turning. J Mater Process Technol 173(3):359–367

    Article  Google Scholar 

  120. Coto B, Navas VG, Gonzalo O et al (2011) Influences of turning parameters in surface residual stresses in AISI 4340 steel. Int J Adv Manuf Technol 53(9):911–919

    Article  Google Scholar 

  121. Thiele JD, Melkote SN, Peascoe RA et al (1999) Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. J Manuf Sci Eng 122(4):642–649

    Article  Google Scholar 

  122. Matsumoto Y, Barash MM, Liu CR (1986) Effect of hardness on the surface integrity of AISI 4340 steel. J Eng Ind 108(3):169–175

    Article  Google Scholar 

  123. Madariaga A, Esnaola JA, Fernandez E et al (2014) Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int J Adv Manuf Technol 71(9):1587–1598

    Article  Google Scholar 

  124. Sadat AB, Bailey JA (1987) Residual stresses in turned AISI 4340 steel. Exp Mech 27(1):80–85

    Article  Google Scholar 

  125. M’Saoubi R, Outeiro JC, Changeux B et al (1999) Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J Mater Process Technol 96(1/3):225–233

    Article  Google Scholar 

  126. Singh D, Rao PV (2007) A surface roughness prediction model for hard turning process. Int J Adv Manuf Technol 32(11):1115–1124

    Article  Google Scholar 

  127. Sarnobat SS, Raval HK (2019) Experimental investigation and analysis of the influence of tool edge geometry and work piece hardness on surface residual stresses, surface roughness and work-hardening in hard turning of AISI D2 steel. Measurement 131:235–260

    Article  Google Scholar 

  128. Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15–28

    Article  Google Scholar 

  129. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280

    Article  Google Scholar 

  130. Lu Y, Song H, Han Q (2020) Residual stress testing and proposed residual stress model of hot-bent H-shaped steel. J Constr Steel Res 175:106373. https://doi.org/10.1016/j.jcsr.2020.106373

    Article  Google Scholar 

  131. Axinte DA, Dewes RC (2002) Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J Mater Process Technol 127(3):325–335

    Article  Google Scholar 

  132. Muthuramalingam T, Akash R, Krishnan S et al (2021) Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process. J Manuf Process 62:1–6

    Article  Google Scholar 

  133. Khoshaim AB, Elsheikh AH, Moustafa EB et al (2021) Experimental investigation on laser cutting of PMMA sheets: effects of process factors on kerf characteristics. J Mater Res Technol 11:235–246

    Article  Google Scholar 

  134. Muthuramalingam T, Pi VN, Elsheikh AH (2021) Taguchi-DEAR based MCDM approach on machining titanium alloy in AWJM process. In: Sattler KU, Nguyen DC, Vu NP et al (eds) Advances in engineering research and application. ICERA 2020. Lecture notes in networks and systems, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-030-64719-3_83

  135. El-Axir MH (2002) A method of modeling residual stress distribution in turning for different materials. Int J Mach Tools Manuf 42(9):1055–1063

    Article  Google Scholar 

  136. Liu CR, Barash MM (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind 104(3):257–264

    Article  Google Scholar 

  137. Liu CR, Barash MM (1976) The mechanical state of the sublayer of a surface generated by chip-removal process—Part 1: cutting with a sharp tool. J Eng Ind 98(4):1192–1199

    Article  Google Scholar 

  138. Wu DW, Matsumoto Y (1990) The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J Eng Ind 112(3):245–252

    Article  Google Scholar 

  139. Merwin JE, Johnson KL (1963) An analysis of plastic deformation in rolling contact. Proc Inst Mech Eng 177(1):676–690

    Article  Google Scholar 

  140. Liang SY, Su JC (2007) Residual stress modeling in orthogonal machining. CIRP Ann Manuf Technol 56(1):65–68

    Article  MathSciNet  Google Scholar 

  141. McDowell DL (1997) An approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246

    Article  Google Scholar 

  142. Jiang Y, Sehitoglu H (1994) An analytical approach to elastic-plastic stress analysis of rolling contact. J Tribol 116(3):577–587

    Article  Google Scholar 

  143. Liu CR, Barash MM (1976) The mechanical state of the sublayer of a surface generated by chip-removal process—Part 2: cutting with a tool with flank wear. J Eng Ind 98(4):1202–1208

    Article  Google Scholar 

  144. Valiorgue F, Rech J (2016) Numerical modeling of residual stresses in turning of a 27MnCr5 Steel. Proc CIRP 45:331–334

    Article  Google Scholar 

  145. Valiorgue F, Rech J, Hamdi H et al (2012) 3D modeling of residual stresses induced in finish turning of an AISI304L stainless steel. Int J Mach Tools Manuf 53(1):77–90

    Article  Google Scholar 

  146. Valiorgue F, Rech J, Hamdi H et al (2007) A new approach for the modelling of residual stresses induced by turning of 316L. J Mater Process Technol 191(1/3):270–273

    Article  Google Scholar 

  147. Mondelin A, Valiorgue F, Coret M et al (2011) Surface integrity prediction in finish turning of 15–5PH stainless steel. Proc Eng 19:270–275

    Article  Google Scholar 

  148. Mondelin A, Valiorgue F, Rech J et al (2012) Hybrid model for the prediction of residual stresses induced by 15–5PH steel turning. Int J Mech Sci 58(1):69–85

    Article  Google Scholar 

  149. Mittal S, Liu CR (1998) A method of modeling residual stresses in superfinish hard turning. Wear 218(1):21–33

    Article  Google Scholar 

  150. Jiang H, He L, Ren Z et al (2020) Prediction of residual stress in the process of turning high strength alloy steel by innovative coated carbide microgroove tools. Int J Adv Manuf Technol 106(11):4693–4705

    Article  Google Scholar 

  151. Sreejith S, Priyadarshini A, Chaganti PK (2020) Multi-objective optimization of surface roughness and residual stress in turning using grey relation analysis. Mater Today Proc 28:2862–2868

    Article  Google Scholar 

  152. Elaziz MA, Elsheikh AH, Sharshir SW (2019) Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system. Inter J Refrig 102:47–54

    Article  Google Scholar 

  153. Babikir HA, Elaziz MA, Elsheikh AH et al (2019) Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alex Eng J 58(3):1077–1087

    Article  Google Scholar 

  154. Shehabeldeen TA, Elaziz MA, Elsheikh AH et al (2019) Modeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizer. J Mater Res Technol 8(6):5882–5892

    Article  Google Scholar 

  155. Elsheikh AH, Sharshir SW, Abd EM et al (2019) Modeling of solar energy systems using artificial neural network: a comprehensive review. Sol Energy 180:622–639

    Article  Google Scholar 

  156. Merma AG, Olivera CAC, Hacha RR et al (2019) Optimization of hematite and quartz bioflotation by artificial neural network (ANN). J Mater Res Technol 8(3):3076–3087

    Article  Google Scholar 

  157. Zhao D, Wang Y, Liang D et al (2019) Performances of regression model and artificial neural network in monitoring welding quality based on power signal. J Mater Res Technol 9(2):1231–1240

    Article  Google Scholar 

  158. Oliva D, Elaziz MA, Elsheikh AH et al (2019) A review on meta-heuristics methods for estimating parameters of solar cells. J Power Sour 435:126683. https://doi.org/10.1016/j.jpowsour.2019.05.089

    Article  Google Scholar 

  159. Elsheikh AH, Abd EM (2019) Review on applications of particle swarm optimization in solar energy systems. Int J Environ Sci Technol 16(2):1159–1170

    Article  Google Scholar 

  160. Elsheikh AH, Deng W, Showaib EA (2019) Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigation and optimization. J Mater Res Technol 9(2):1325–1339

    Article  Google Scholar 

  161. Nwobi-Okoye CC, Ochieze BQ, Okiy S (2019) Multi-objective optimization and modeling of age hardening process using ANN, ANFIS and genetic algorithm: results from aluminum alloy A356/cow horn particulate composite. J Mater Res Technol 8:3054–3075

    Article  Google Scholar 

  162. Essa FA, Abd EM, Elsheikh AH (2020) An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl Therm Eng 170:115020. https://doi.org/10.1016/j.applthermaleng.2020.115020

    Article  Google Scholar 

  163. Elsheikh AH, Shehabeldeen TA, Zhou J et al (2020) Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. J Intell Manuf 32:1377–1388

    Article  Google Scholar 

  164. Shehabeldeen TA, Elaziz MA, Elsheikh AH et al (2020) A novel method for predicting tensile strength of friction stir welded AA6061 aluminium alloy joints based on hybrid random vector functional link and henry gas solubility optimization. IEEE Access 8:79896–79907

    Article  Google Scholar 

  165. Elsheikh AH, Katekar VP, Muskens OL et al (2021) Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate. Process Saf Environ Prot 148:273–282

    Article  Google Scholar 

  166. Abd EM, Shehabeldeen TA, Elsheikh AH et al (2020) Utilization of random vector functional link integrated with marine predators algorithm for tensile behavior prediction of dissimilar friction stir welded aluminum alloy joints. J Mater Res Technol 9(5):11370–11381

    Article  Google Scholar 

  167. Elsheikh AH, Sharshir SW, Ismail AS et al (2020) An artificial neural network based approach for prediction the thermal conductivity of nanofluids. SN Appl Sci 2(2):235. https://doi.org/10.1007/s42452-019-1610-1

    Article  Google Scholar 

  168. Elsheikh AH, Abd EM, Babikir HA et al (2020) A new artificial neural network model integrated with a cat swarm optimization algorithm for predicting the emitted noise during axial piston pump operation. IOP Conf Ser Mater Sci Eng 973:012035. https://doi.org/10.1088/1757-899X/973/1/012035

    Article  Google Scholar 

  169. Jafarian F, Amirabadi H, Sadri J (2015) Experimental measurement and optimization of tensile residual stress in turning process of Inconel 718 superalloy. Measurement 63:1–10

    Article  Google Scholar 

  170. Jafarian F, Amirabadi H, Sadri J et al (2014) Simultaneous optimizing residual stress and surface roughness in turning of Inconel 718 superalloy. Mater Manuf Process 29(3):337–343

    Article  Google Scholar 

  171. Zhang JY, Liang SY, Zhang G et al (2006) Modeling of residual stress profile in finish hard turning. Mater Manuf Process 21(1):39–45

    Article  Google Scholar 

  172. Umbrello D, Ambrogio G, Filice L et al (2008) A hybrid finite element method–artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Mater Des 29(4):873–883

    Article  Google Scholar 

  173. Khoshaim AB, Elsheikh AH, Moustafa EB et al (2021) Prediction of residual stresses in turning of pure iron using artificial intelligence-based methods. J Mater Res Technol 11:2181–2194

    Article  Google Scholar 

  174. Luo J, Sun Y (2020) Optimization of process parameters for the minimization of surface residual stress in turning pure iron material using central composite design. Measurement 163:108001. https://doi.org/10.1016/j.measurement.2020.108001

    Article  Google Scholar 

  175. Ee KC, Dillon OW, Jawahir IS (2005) Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. Inter J Mech Sci 47(10):1611–1628

    Article  MATH  Google Scholar 

  176. Guo YB, Wen Q, Woodbury KA (2005) Dynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulations. J Manuf Sci Eng 128(3):749–759

    Article  Google Scholar 

  177. Moharrami R, Sanayei M (2020) Improvement of indentation technique for measuring general biaxial residual stresses in austenitic steels. Precis Eng 64:220–227

    Article  Google Scholar 

  178. Wang Y, Sha A, Li X et al (2020) Numerical simulation of residual stresses in hot isostatic pressed SiC/GH4738 composites. Compos Part C Open Access 3:100046. https://doi.org/10.1016/j.jcomc.2020.100046

    Article  Google Scholar 

  179. Meng L, Atli M, He N (2017) Measurement of equivalent residual stresses generated by milling and corresponding deformation prediction. Precis Eng 50:160–170

    Article  Google Scholar 

  180. Yue C, Wang B, Liu X et al (2015) Adiabatic shear mechanisms for the hard cutting process. Chin J Mech Eng 28(3):592–598

    Article  Google Scholar 

  181. Okushima K, Kakino Y (1971) The residual stress produced by metal cutting. Defense Technical Information Center

  182. Lin ZC, Lin YY, Liu CR (1991) Effect of thermal load and mechanical load on the residual stress of a machined workpiece. Inter J Mech Sci 33(4):263–278

    Article  Google Scholar 

  183. Stenberg N, Proudian J (2013) Numerical modelling of turning to find residual stresses. Proc CIRP 8:258–264

    Article  Google Scholar 

  184. Hua J, Shivpuri R, Cheng X et al (2005) Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mat Sci Eng A 394(1/2):238–248

    Article  Google Scholar 

  185. Lee EH, Shaffer BW (1951) The theory of plasticity applied to a problem of machining. J Appl Mech 18:405–413

  186. Fang N (2005) Tool-chip friction in machining with a large negative rake angle tool. Wear 258(5/6):890–897

    Article  Google Scholar 

  187. Fang N, Dewhurst P (2005) Slip-line modeling of built-up edge formation in machining. Inter J Mech Sci 47(7):1079–1098

    Article  MATH  Google Scholar 

  188. Salio M, Berruti T, De Poli G (2006) Prediction of residual stress distribution after turning in turbine disks. Inter J Mech Sci 48(9):976–984

    Article  Google Scholar 

  189. Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16(6):318–324

    Article  Google Scholar 

  190. Yang X, Liu CR (2002) A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method. Inter J Mech Sci 44(4):703–723

    Article  MATH  Google Scholar 

  191. Shet C, Deng X (2003) Residual stresses and strains in orthogonal metal cutting. Int J Mach Tools Manuf 43(6):573–587

    Article  Google Scholar 

  192. Zhang X, Wu S, Liu CR (2011) The periodical fluctuation of residual stress in hard turned surface and its relationship with chip formation. In: Proceedings of 2011 ASME international manufacturing science and engineering conference, pp 205–213

  193. Zhang S, Li J, Zhu X et al (2013) Saw-tooth chip formation and its effect on cutting force fluctuation in turning of Inconel 718. Int J Precis Eng Manuf 14(6):957–963

    Article  MathSciNet  Google Scholar 

  194. Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121(2):163–172

    Article  Google Scholar 

  195. Singla S, Kumar VS, Rathinam K et al (2020) Numerical study of residual stresses in duplex turning process. Mater Today Proc 26:247–255

    Article  Google Scholar 

  196. Outeiro JC, Pina JC, M’Saoubi R et al (2008) Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Ann Manuf Technol 57(1):77–80

    Article  Google Scholar 

  197. Kara F, Aslantaş K, Çiçek A (2016) Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Appl Soft Comput 38:64–74

    Article  Google Scholar 

  198. Chen L, El-Wardany TI, Harris WC (2004) Modelling the effects of flank wear land and chip formation on residual stresses. CIRP Ann Manuf Technol 53(1):95–98

    Article  Google Scholar 

  199. Umer U, Qudeiri JA, Hussein HAM et al (2014) Multi-objective optimization of oblique turning operations using finite element model and genetic algorithm. Int J Adv Manuf Technol 71(1):593–603

    Article  Google Scholar 

  200. Kim MJ (2005) 3D finite element analysis of evaporative laser cutting. Appl Math Model 29(10):938–954

    Article  MATH  Google Scholar 

  201. Al-Zkeri I, Rech J, Altan T et al (2009) Optimization of the cutting edge geometry of coated carbide tools in dry turning of steels using a finite element analysis. Mach Sci Technol 13(1):36–51

    Article  Google Scholar 

  202. Li Q, Li Dp, Hu M et al (2010) Optimization design of spiral bevel gear milling machine based on test FEM simulation and sensitivity analysis. In: Proceedings of 2010 IEEE 17th international conference on industrial engineering and engineering management, pp 444–448

  203. Huang K, Yang W (2016) Analytical modeling of residual stress formation in workpiece material due to cutting. Inter J Mech Sci 114:21–34

    Article  Google Scholar 

  204. Lazoglu I, Buyukhatipoglu K, Kratz H et al (2006) Forces and temperatures in hard turning. Mach Sci Technol 10(2):157–179

    Article  Google Scholar 

  205. Ji X, Li B, Zhang X et al (2014) The effects of minimum quantity lubrication (MQL) on machining force, temperature, and residual stress. Int J Precis Eng Manuf 15(1):2443–2451

    Article  Google Scholar 

  206. Hua J, Umbrello D, Shivpuri R (2006) Investigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steel. J Mater Process Tech 171(2):180–187

    Article  Google Scholar 

  207. Stephenson DA, Agapiou JS (2005) Metal cutting theory and practice. Taylor & Francis

    Google Scholar 

  208. Bar-Shay A, Ber A (1984) Residual stresses in machined surfaces. Elaboration of linear equation and design of annular test specimen. CIRP Ann Manuf Technol 33(1):393–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar H. Elsheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, A.H., Shanmugan, S., Muthuramalingam, T. et al. A comprehensive review on residual stresses in turning. Adv. Manuf. 10, 287–312 (2022). https://doi.org/10.1007/s40436-021-00371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-021-00371-0

Keywords

Navigation