Skip to main content
Log in

A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

For difficult-to-cut materials such as titanium alloy, a machining method of longitudinal-torsion ultrasonic-assisted milling (LTUM) was put forward to realize the anti-fatigue manufacturing, and cutting force, cutting temperature and residual stress (RS) were analyzed by 3D finite element simulation (FES). Firstly, based on thermal mechanical coupling, a 3D FES model of ultrasonic milling was established, the simulation of the cutting force, cutting temperature and RS were realized. Then, based on the 3D FES milling model, the milling process was equivalent to the oblique cutting model, it effectively improved the computation efficiency and realized longitudinal-torsional ultrasonic compound in milling process. Base on 3D equivalent model, compared with traditional milling (TM) and LTUM from the cutting force, cutting temperature and machined-induced RS. It is concluded that the LTUM effectively reduces the cutting force and cutting temperature, increases surface compressive stress and compressive stress layer depth. Furthermore, experiments were carried out to verify the equivalent model of LTUM, it shows that the simulated results are in agreement with experimental results, and predicts cutting force, cutting temperature and RS with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Su H, Liu P, Fu Y, Xu J (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin J Aeronaut 25:784–790. https://doi.org/10.1016/S1000-9361(11)60445-7

    Article  Google Scholar 

  2. Sawant MS, Jain NK, Palani IA (2018) Influence of dimple and spot-texturing of HSS cutting tool on machining of Ti-6Al-4V. J Mater Process Technol 261:1–11. https://doi.org/10.1016/j.jmatprotec.2018.05.032

    Article  Google Scholar 

  3. Aslantas K, Ekici E, Cicek A (2018) Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis. Meas: J Int Meas Conf 128:419–427. https://doi.org/10.1016/j.measurement.2018.06.066

    Article  Google Scholar 

  4. Cellier A, Chalon F, Grimal-Perrigouas V, Bonhoure D, Leroy R (2014) Effects of cutting angles in Ti-6al-4v milling process on surface integrity: influence of roughness and residual stresses on fatigue limit. Mach Sci Technol 18:565–584. https://doi.org/10.1080/10910344.2014.955369

    Article  Google Scholar 

  5. Nespor D, Denkena B, Grove T, Boc V (2015) Differences and similarities between the induced residual stresses after ball end milling and orthogonal cutting of Ti-6Al-4V. J Mater Process Technol 226:15–24. https://doi.org/10.1016/j.jmatprotec.2015.06.033

    Article  Google Scholar 

  6. Hou J, Zhou W, Duan H, Yang G, Xu H, Zhao N (2014) Influence of cutting speed on cutting force, flank temperature, and tool wear in end milling of Ti-6Al-4V alloy. Int J Adv Manuf Technol 70:1835–1845. https://doi.org/10.1007/s00170-013-5433-8

    Article  Google Scholar 

  7. Wang J, Zhang J, Feng P, Guo P (2018) Experimental and theoretical investigation on critical cutting force in rotary ultrasonic drilling of brittle materials and composites. Int J Mech Sci 135:555–564. https://doi.org/10.1016/j.ijmecsci.2017.11.042

    Article  Google Scholar 

  8. Niu Y, Jiao F, Zhao B, Gao G (2019) Investigation of cutting force in longitudinal- torsional ultrasonic-assisted milling of Ti-6Al-4V. Materials,12. https://doi.org/10.3390/ma12121955

    Article  Google Scholar 

  9. Zhu Y, Wang K, Li L, Huang Y (2009) Evaluation of an ultrasound-aided deep rolling process for anti-fatigue applications. J Mater Eng Perform 18:1036–1040. https://doi.org/10.1007/s11665-008-9341-2

    Article  Google Scholar 

  10. Ma C, Wang Z (2018) Experimental and numerical investigation of the breakage of a cutting tool with ultrasonic vibration. Precis Eng 51:393–402. https://doi.org/10.1016/j.precisioneng.2017.09.011

    Article  Google Scholar 

  11. Niu Y, Jiao F, Zhao B, Wang D (2017) Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V. Int J Adv Manuf Technol 93:4345–4356. https://doi.org/10.1007/s00170-017-0871-3

    Article  Google Scholar 

  12. Xiang D, Wu B, Yao Y, Liu Z, Feng H (2019) Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex® honeycomb-core composites. Int J Adv Manuf Technol 100:1521–1530. https://doi.org/10.1007/s00170-018-2810-3

    Article  Google Scholar 

  13. Wu C, Chen S, Xiao C, Cheng K, Ding H. (2019) Longitudinaltorsional ultrasonic vibration-assisted side milling process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,233:3356-3363. https://doi.org/10.1177/0954406218819023

    Google Scholar 

  14. Mohammadpour M, Razfar MR, Jalili SR (2010) Numerical investigating the effect of machining parameters on residual stresses in orthogonal cutting. Simul Model Pract Theory 18:378–389. https://doi.org/10.1016/j.simpat.2009.12.004

    Article  Google Scholar 

  15. Song S, Zuo D (2014) Modelling and simulation of whirling process based on equivalent cutting volume. Simul Model Pract Theory 42:98–106. https://doi.org/10.1016/j.simpat.2013.12.011

    Article  Google Scholar 

  16. Salonitis K, Kolios A (2015) Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 steel. Int J Adv Manuf Technol 79:1443–1452. https://doi.org/10.1007/s00170-015-6912-x

    Article  Google Scholar 

  17. Yaich M, Ayed Y, Bouaziz Z, Germain G (2017) Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: application to the Ti6Al4V. Int J Adv Manuf Technol 93:283–303. https://doi.org/10.1007/s00170-016-8934-4

    Article  Google Scholar 

  18. Binder M, Klocke F, Doebbeler B (2017) An advanced numerical approach on tool wear simulation for tool and process design in metal cutting. Simul Model Pract Theory 70:65–82. https://doi.org/10.1016/j.simpat.2016.09.001

    Article  Google Scholar 

  19. Mamedov A, Lazoglu I (2016) Thermal analysis of micro milling titanium alloy Ti-6Al-4V. J Mater Process Technol 229:659–667. https://doi.org/10.1016/j.jmatprotec.2015.10.019

    Article  Google Scholar 

  20. Ducobu F, Riviere-Lorphevre E, Filippi E (2017) Finite element modelling of 3D orthogonal cutting experimental tests with the coupled Eulerian-Lagrangian (CEL) formulation. Finite Elem Anal Des 134:27–40. https://doi.org/10.1016/j.finel.2017.05.010

    Article  MATH  Google Scholar 

  21. Wu Q, Xie D, Si Y, Zhang Y, Li L, Zhao Y (2018) Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Process 32:530–537. https://doi.org/10.1016/j.jmapro.2018.03.015

    Article  Google Scholar 

  22. Jiang X, Li B, Yang J, Zuo X, Li K (2013) An approach for analyzing and controlling residual stress generation during high-speed circular milling. Int J Adv Manuf Technol 66:1439–1448. https://doi.org/10.1007/s00170-012-4421-8

    Article  Google Scholar 

  23. Lotfi M, Amini S, Aghaei M (2018) 3D FEM simulation of tool wear in ultrasonic assisted rotary turning. Ultrasonics 88:106–114. https://doi.org/10.1016/j.ultras.2018.03.013

    Article  Google Scholar 

  24. Patil S, Joshi S, Tewari A, Joshi SS (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54:694–705. https://doi.org/10.1016/j.ultras.2013.09.010

    Article  Google Scholar 

  25. Elhami S, Razfar MR, Farahnakian M (2015) Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140. Int J Mech Sci 103:158–171. https://doi.org/10.1016/j.ijmecsci.2015.09.007

    Article  Google Scholar 

  26. Paktinat H, Amini S. (2018) Experiments and finite element simulation of ultrasonic assisted drilling. Journal of Manufacturing Science and Engineering, Transactions of the ASME,140. doi: https://doi.org/10.1115/1.4040321

  27. Sofuolu MA, Cakir FH, Gurgen S, Orak S, Kuhan MC (2018) Numerical investigation of hot ultrasonic assisted turning of aviation alloys. J Bra Soc Mech Sci Eng 40. https://doi.org/10.1007/s40430-018-1037-4

  28. Çakır FH, Sofuoğlu MA, Gürgen S (2018) Machining of Hastelloy-X based on finite element modelling. Advanced Engineering Forum 30:1–7. https://doi.org/10.4028/www.scientific.net/AEF.30.1

    Article  Google Scholar 

  29. Patil S, Joshi S, Tewari A, Joshi SS (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54:694–705. https://doi.org/10.1016/j.ultras.2013.09.010

    Article  Google Scholar 

  30. Atlati S, Haddag B, Nouari M, Zenasni M (2014) Thermomechanical modelling of the tool-workmaterial interface in machining and its implementation using the ABAQUS VUINTER subroutine. Int J Mech Sci 87:102–117. https://doi.org/10.1016/j.ijmecsci.2014.05.034

    Article  Google Scholar 

Download references

Funding

The paper is sponsored by National Natural Science Foundation of China (No. 51675164) and (No. U1604255), and China postdoctoral science foundation (No. 2019M662493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, N., Feng, J. & Bo, Z. A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling. Int J Adv Manuf Technol 106, 385–400 (2020). https://doi.org/10.1007/s00170-019-04636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04636-8

Keywords

Navigation