Skip to main content
Log in

Finite element simulation of ultrasonic-assisted machining: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic-assisted machining is an advanced method which could improve the process of machining. Besides, simulation modeling process is a method to help the researchers analyze different aspects of the process with more details in a shorter time. Simulation of ultrasonic-assisted machining is also a field of research that is of interest to researchers working in the field of machining processes. In recent years, a variety of papers have been published where cutting forces, chip formation, tool wear and temperature, and microstructure changes were simulated. That being the case, a review paper is required to represent the advances implemented by researchers in the simulation of ultrasonic-assisted machining process. Moreover, the difficulties and necessities of this process are mentioned at the end of this review paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its Supplementary information files).

References

  1. Flórez García LC, González Rojas HA, Sánchez Egea AJ (2020) Estimation of specific cutting energy in an S235 alloy for multi-directional ultrasonic vibration-assisted machining using the finite element method. Materials 13(3):567

    Article  Google Scholar 

  2. Shamoto E, Moriwaki T (1993) Fundamental study on elliptical vibration cutting. In Proceeding of the 8th Annual Meeting, ASPE, 162–165

  3. Lotfi M, Amini S, Aghaei M (2018) 3D analysis of surface topography in vibratory turning. Int J Adv Manuf Technol 95(1-4):197–204

    Article  Google Scholar 

  4. Kurniawan R, Kiswanto G, Ko TJ (2017) Surface roughness of two-frequency elliptical vibration texturing (TFEVT) method for micro-dimple pattern process. Int J Mach Tools Manuf 116:77–95

    Article  Google Scholar 

  5. Nosouhi R, Behbahani S, Amini S, Khosrojerdi MR (2014) An experimental study on the cutting forces, surface roughness and the hardness of Al 6061 in 1D and 2D ultrasonic assisted turning. Appl Mech Mater 680:224–227

    Article  Google Scholar 

  6. Amini S, Aghaei M, Lotfi M, Hakimi E (2017) Analysis of linear vibration in rotary turning of AISI 4140 steel. Int J Adv Manuf Technol 91(9-12):4107–4116

    Article  Google Scholar 

  7. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  8. Sajjady SA, Abadi HNH, Amini S, Nosouhi R (2016) Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Mater Des 93:311–323

    Article  Google Scholar 

  9. Shamoto E, Suzuki N, Hino R (2007) Simulation of elliptical vibration cutting process with thin shear plane model. In Proc ASPE Vol. 40, pp. 64–69

  10. Kurniawan R, Ali S, Park KM, Li CP, Ko TJ (2019) Development of a three-dimensional ultrasonic elliptical vibration transducer (3D-UEVT) based on sandwiched piezoelectric actuator for micro-grooving. Int J Precis Eng Manuf 20(7):1229–1240

    Article  Google Scholar 

  11. Lotfi M, Amini S, Aghayar Z, Sajjady SA, Farid AA (2020) Effect of 3D elliptical ultrasonic assisted boring on surface integrity. Measurement 163:108008

    Article  Google Scholar 

  12. Azarhoushang B, Akbari J (2007) Ultrasonic-assisted drilling of Inconel 738-LC. Int J Mach Tools Manuf 47(7-8):1027–1033

    Article  Google Scholar 

  13. Kadivar MA, Akbari J, Yousefi R, Rahi A, Nick MG (2014) Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites. Robot Comput Integr Manuf 30(3):344–350

    Article  Google Scholar 

  14. Baraheni M, Amini S (2020) Mathematical model to predict cutting force in rotary ultrasonic assisted end grinding of Si3N4 considering both ductile and brittle deformation. Measurement 156:107586

    Article  Google Scholar 

  15. Zhao B, Chang B, Yuan L, Li P (2020) Influence of force load on the stability of ultrasonic longitudinal–torsional composite drilling system. Int J Adv Manuf Technol 106(3-4):891–905

    Article  Google Scholar 

  16. Amini S, Soleimani M, Paktinat H, Lotfi M (2017) Effect of longitudinal–torsional vibration in ultrasonic-assisted drilling. Mater Manuf Process 32(6):616–622

    Article  Google Scholar 

  17. Geng D, Zhang D, Xu Y, He F, Liu F (2014) Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP. J Reinf Plast Compos 33(9):797–809

    Article  Google Scholar 

  18. Mitrofanov AV, Babitsky VI, Silberschmidt VV (2003) Finite element simulations of ultrasonically assisted turning. Comput Mater Sci 28(3-4):645–653

    Article  Google Scholar 

  19. Babitsky VI, Mitrofanov AV, Silberschmidt VV (2004) Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42(1):81–86

    Article  Google Scholar 

  20. Ahmed N, Mitrofanov AV, Babitsky VI, Silberschmidt VV (2006) Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Mater Sci Eng A 424(1-2):318–325

    Article  Google Scholar 

  21. Patil S, Joshi S, Tewari A, Joshi SS (2014) Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54(2):694–705

    Article  Google Scholar 

  22. Lotfi M, Amini S (2018) Effect of ultrasonic vibration on frictional behavior of tool–chip interface: finite element analysis and experimental study. Proc Inst Mech Eng B J Eng Manuf 232(7):1212–1220

    Article  Google Scholar 

  23. Lotfi M, Amini S, Ashrafi H (2019) Theoretical and numerical modeling of tool–chip friction in ultrasonic-assisted turning. Proc Inst Mech Eng Part E: J Process Mech Eng 233(4):824–838

    Article  Google Scholar 

  24. Bai W, Sun R, Leopold J, Silberschmidt VV (2017) Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: Numerical modelling and experimental analysis. Ultrasonics 78:70–82

    Article  Google Scholar 

  25. Khajehzadeh M, Boostanipour O, Razfar MR (2020) Finite element simulation and experimental investigation of residual stresses in ultrasonic assisted turning. Ultrasonics 108:106208

    Article  Google Scholar 

  26. Lotfi M, Amini S, Sajjady SA (2019) Development of a friction model based on oblique cutting theory. Int J Mech Sci 160:241–254

    Article  Google Scholar 

  27. Amini S, Shamoto E, Suzuki N, Nategh MJ (2010) FE Analysis of one-directional and elliptical vibration cutting processes. IJAT 4(3):252–258

    Article  Google Scholar 

  28. He Y, Zou P, Zhu WL, Ehmann KF (2017) Ultrasonic elliptical vibration cutting of hard materials: simulation and experimental study. Int J Adv Manuf Technol 91(1-4):363–374

    Article  Google Scholar 

  29. Lotfi M, Amini S (2018) FE simulation of linear and elliptical ultrasonic vibrations in turning of Inconel 718. Proc Inst Mech Eng Part E: J Process Mech Eng 232(4):438–448

    Article  Google Scholar 

  30. Kong C, Wang D (2018) Numerical investigation of the performance of elliptical vibration cutting in machining of AISI 1045 steel. Int J Adv Manuf Technol 98(1-4):715–727

    Article  Google Scholar 

  31. Lotfi M, Amini S, Akbari J (2020) Surface integrity and microstructure changes in 3D elliptical ultrasonic assisted turning of Ti–6Al–4V: FEM and experimental examination. Tribol Int 151:106492

    Article  Google Scholar 

  32. Mitrofanov AV, Babitsky VI, Silberschmidt VV (2005) Thermomechanical finite element simulations of ultrasonically assisted turning. Comput Mater Sci 32(3):463–471

    Article  Google Scholar 

  33. Ahmed N, Mitrofanov AV, Babitsky VI, Silberschmidt VV (2007) 3D finite element analysis of ultrasonically assisted turning. Comput Mater Sci 39(1):149–154

    Article  Google Scholar 

  34. Amini S, Soleimanimehr H, Nategh MJ, Abudollah A, Sadeghi MH (2008) FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. J Mater Process Technol 201(1-3):43–47

    Article  Google Scholar 

  35. Muhammad R, Ahmed N, Demiral M, Roy A, Silberschmidt VV (2011) Computational study of ultrasonically-assisted turning of Ti alloys. In Advanced Materials Research (Vol. 223, pp. 30–36). Trans Tech Publications Ltd.

  36. Khajehzadeh M, Akhlaghi M, Razfar MR (2014) Finite element simulation and experimental investigation of tool temperature during ultrasonically assisted turning of aerospace aluminum using multicoated carbide inserts. Int J Adv Manuf Technol 75(5-8):1163–1175

    Article  Google Scholar 

  37. Cakir FH, Gurgen S, Sofuoglu MA, Celik ON, Kushan MC (2015) Finite element modeling of ultrasonic assisted turning of Ti6Al4V alloy. Procedia Soc Behav Sci 195:2839–2848

    Article  Google Scholar 

  38. Lotfi M, Amini S, Aghaei M (2018) Tool wear prediction and surface improvement in vibration cutting. Tribol Trans 61(3):414–423

    Article  Google Scholar 

  39. Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018) Numerical investigation of hot ultrasonic assisted turning of aviation alloys. J Braz Soc Mech Sci Eng 40(3):122

    Article  Google Scholar 

  40. Gholamzadeh B, Soleimanimehr H (2019) Finite element modeling of ultrasonic-assisted turning: cutting force and heat generation. Mach Sci Technol 23(6):869–885

    Article  Google Scholar 

  41. Shan S, Feng P, Zha H, Feng F (2020) Building of longitudinal ultrasonic assisted turning system and its cutting simulation study on bulk metallic glass. Materials 13(14):3131

    Article  Google Scholar 

  42. Lu D, Cai LG, Cheng Q (2014) Finite element study of ultrasonic elliptical vibration turning of Ti6Al4V. In Applied Mechanics and Materials (Vol. 494, pp. 383–386). Trans Tech Publications Ltd.

  43. Xu W, Zhang L, Wu Y (2016) Effect of tool vibration on chip formation and cutting forces in the machining of fiber-reinforced polymer composites. Mach Sci Technol 20(2):312–329

    Article  Google Scholar 

  44. Guo D, Zhang M (2019) Simulation research on microscopic characteristics of elliptical vibration turning. In Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence (pp. 1–5)

  45. Lotfi M, Amini S, Aghaei M (2018) 3D FEM simulation of tool wear in ultrasonic assisted rotary turning. Ultrasonics 88:106–114

    Article  Google Scholar 

  46. Lotfi M, Amini S, Aghaei M (2018) Tool wear modeling in rotary turning modified by ultrasonic vibration. Simul Model Pract Theory 87:226–238

    Article  Google Scholar 

  47. Farhadi A, Abdullah A, Zarkoob J, Pak A (2010). Analytical and numerical simulation of ultrasonic assisted grinding. In Engineering Systems Design and Analysis (Vol. 49187, pp. 763–768)

  48. Zahedi A, Akbari J (2011). FEM analysis of single grit chip formation in creep-feed grinding of Inconel 718 superalloy. In Advanced Materials Research (Vol. 325, pp. 128–133). Trans Tech Publications Ltd.

  49. Siebrecht T, Biermann D, Ludwig H, Rausch S, Kersting P, Blum H, Rademacher A (2014) Simulation of grinding processes using finite element analysis and geometric simulation of individual grains. Prod Eng 8(3):345–353

    Article  Google Scholar 

  50. Chen JB, Fang QH, Wang CC, Du JK, Liu F (2016) Theoretical study on brittle–ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precis Eng 46:104–117

    Article  Google Scholar 

  51. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2012) Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia CIRP 1:455–459

    Article  Google Scholar 

  52. Phadnis VA, Roy A, Silberschmidt VV (2013) A finite element model of ultrasonically assisted drilling in carbon/epoxy composites. Procedia CIRP 8:141–146

    Article  Google Scholar 

  53. Lotfi M, Amini S (2017) Experimental and numerical study of ultrasonically-assisted drilling. Ultrasonics 75:185–193

    Article  Google Scholar 

  54. Lotfi M, Amini S (2019) Effect of longitudinally intermittent movement of cutting tool in drilling of AISI 1045 steel: a three-dimensional numerical simulation. Proc Inst Mech Eng C J Mech Eng Sci 233(12):4081–4090

    Article  Google Scholar 

  55. Liang W, Xu J, Ren W, Liu Q, Wang X, Yu H (2019) Study on the influence of tool point angle on ultrasonic vibration-assisted drilling of titanium alloy. Int J Adv Manuf Technol 105(1-4):1069–1082

    Article  Google Scholar 

  56. Paktinat H, Amini S (2017) Ultrasonic assistance in drilling: FEM analysis and experimental approaches. Int J Adv Manuf Technol 92(5-8):2653–2665

    Article  Google Scholar 

  57. Wang P, Wang D (2020) Evaluation of different tool geometries in the finite element simulation of ultrasonic-assisted drilling of Ti6A14V. J Braz Soc Mech Sci Eng 42(4):1–14

    Article  Google Scholar 

  58. Wang P, Wang D (2020) Study on ultrasonic-assisted drilling of Ti6Al4V using 3-flute drill in the finite element simulation. Proc Inst Mech Eng C J Mech Eng Sci 234(7):1298–1310

    Article  Google Scholar 

  59. Paktinat H, Amini S (2018) Numerical and experimental studies of longitudinal and longitudinal-torsional vibrations in drilling of AISI 1045. Int J Adv Manuf Technol 94(5-8):2577–2592

    Article  Google Scholar 

  60. Elhami S, Razfar MR, Farahnakian M (2015) Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140. Int J Mech Sci 103:158–171

    Article  Google Scholar 

  61. Xiang D, Shi Z, Feng H, Wu B, Zhang Z, Chen Y, Niu X, Zhao B (2019) Finite element analysis of ultrasonic assisted milling of SiCp/Al composites. Int J Adv Manuf Technol 105(7-8):3477–3488

    Article  Google Scholar 

  62. Ying N, Feng J, Bo Z (2020) A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling. Int J Adv Manuf Technol 106(1-2):385–400

    Article  Google Scholar 

  63. Chen W, Huo D, Hale J, Ding H (2018) Kinematics and tool-workpiece separation analysis of vibration assisted milling. Int J Mech Sci 136:169–178

    Article  Google Scholar 

  64. Chen W, Zheng L, Teng X, Yang K, Huo D (2019) Finite element simulation and experimental investigation on cutting mechanism in vibration-assisted micro-milling. Int J Adv Manuf Technol 105(11):4539–4549

    Article  Google Scholar 

  65. Lotfi M, Jahanbakhsh M, Farid AA (2016) Wear estimation of ceramic and coated carbide tools in turning of Inconel 625: 3D FE analysis. Tribol Int 99:107–116

    Article  Google Scholar 

  66. Malakizadi A, Gruber H, Sadik I, Nyborg L (2016) An FEM-based approach for tool wear estimation in machining. Wear 368:10–24

    Article  Google Scholar 

  67. Umer U, Kishawy H, Ghandehariun A, Xie L, Al-Ahmari A (2017) On modeling tool performance while machining aluminum-based metal matrix composites. Int J Adv Manuf Technol 92(9-12):3519–3530

    Article  Google Scholar 

  68. Lotfi M, Amini S, Al-Awady IY (2018) 3D numerical analysis of drilling process: heat, wear, and built-up edge. Adv Manuf 6(2):204–214

    Article  Google Scholar 

  69. Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann 62(2):695–718

    Article  Google Scholar 

  70. Lotfi M, Farid AA, Soleimanimehr H (2015) The effect of chip breaker geometry on chip shape, bending moment, and cutting force: FE analysis and experimental study. Int J Adv Manuf Technol 78(5-8):917–925

    Article  Google Scholar 

  71. Maurel-Pantel A, Fontaine M, Thibaud S, Gelin JC (2012) 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul Model Pract Theory 22:13–27

    Article  Google Scholar 

  72. Caixu YUE, Huang C, Xianli LIU, Shengyu HAO, Jun LIU (2017) 3D FEM simulation of milling force in corner machining process. Chin J Mech Eng 30(2):286–293

    Article  Google Scholar 

  73. Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4-5):435–444

    Article  Google Scholar 

  74. Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Technol 221:128–145

    Article  Google Scholar 

  75. Yadav RK, Abhishek K, Mahapatra SS (2015) A simulation approach for estimating flank wear and material removal rate in turning of Inconel 718. Simul Model Pract Theory 52:1–14

    Article  Google Scholar 

  76. Arısoy YM, Guo C, Kaftanoğlu B, Özel T (2016) Investigations on microstructural changes in machining of Inconel 100 alloy using face turning experiments and 3D finite element simulations. Int J Mech Sci 107:80–92

    Article  Google Scholar 

  77. Arısoy YM, Özel T (2015) Prediction of machining induced microstructure in Ti–6Al–4V alloy using 3-D FE-based simulations: effects of tool micro-geometry, coating and cutting conditions. J Mater Process Technol 220:1–26

    Article  Google Scholar 

  78. Jafarian F, Ciaran MI, Umbrello D, Arrazola PJ, Filice L, Amirabadi H (2014) Finite element simulation of machining Inconel 718 alloy including microstructure changes. Int J Mech Sci 88:110–121

    Article  Google Scholar 

  79. Jafarian F, Umbrello D, Jabbaripour B (2016) Identification of new material model for machining simulation of Inconel 718 alloy and the effect of tool edge geometry on microstructure changes. Simul Model Pract Theory 66:273–284

    Article  Google Scholar 

  80. Caruso S, Imbrogno S, Rinaldi S, Umbrello D (2017) Finite element modeling of microstructural changes in Waspaloy dry machining. Int J Adv Manuf Technol 89(1-4):227–240

    Article  Google Scholar 

  81. Rana K, Rinaldi S, Imbrogno S, Rotella G, Umbrello D, Saoubi RM, Ayvar-Soberanis S (2016) 2D FE prediction of surface alteration of Inconel 718 under machining condition. Procedia CIRP 45:227–230

    Article  Google Scholar 

  82. Denguir LA, Outeiro JC, Fromentin G, Vignal V, Besnard R (2016) Orthogonal cutting simulation of OFHC copper using a new constitutive model considering the state of stress and the microstructure effects. Procedia CIRP 46:238–241

    Article  Google Scholar 

Download references

Funding

Special appreciation to the Iran National Science Foundation (INSF) and Iran’s National Elites Foundation (INEF) for the financial support through the Shahid Chamran Post-Doctoral Grant of 99010445.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Lotfi: Conceptualization, methodology, resources, writing-original draft. (First author).

Javad Akbari: Supervision and Editing. (Corresponding author).

Corresponding author

Correspondence to Javad Akbari.

Ethics declarations

Consent to participate

The authors agreed to participate in this manuscript.

Consent to publish

The authors agreed with this submission.

Ethical approval

Our paper is an original paper which has neither previously, nor simultaneously, in whole or in part been submitted anywhere else. All authors prove that the paper is an original paper.

Conflict of interest/Competing interests

The authors declared no potential conflicts of interest/competing interests with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, M., Akbari, J. Finite element simulation of ultrasonic-assisted machining: a review. Int J Adv Manuf Technol 116, 2777–2796 (2021). https://doi.org/10.1007/s00170-021-07205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07205-0

Keywords

Navigation