Skip to main content
Log in

On modeling tool performance while machining aluminum-based metal matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tool performance while machining aluminum-based metal matrix composites has been investigated by developing finite element models based on particle size and volume fraction of the workpiece. Two types of finite element models are developed, i.e., with and without cohesive elements. The effects of varying cutting speed, feed rate, volume fraction, and size of reinforcement particles on tool performance are investigated using both models. It has been found that models without cohesive zone element can predict cutting forces, tool stresses, and temperatures to a reasonable degree of accuracy. The increase in tool stresses and temperatures due to cutting speeds, feed rate, particle size, and volume fraction can be visualized with these models. Models based on cohesive elements can predict localized effect of particle debonding and failure on tool stresses and machined surface. It has been noticed that increase in particle size and cutting speed increases the effects of particle rolling and sliding on the tool face due to increase in kinetic energy resulting in high wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann - Manuf Technol 53:91–94. doi:10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  2. Kishawy HA, Kannan S, Balazinski M (2005) Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Ann - Manuf Technol 54:55–58. doi:10.1016/S0007-8506(07)60048-1

    Article  Google Scholar 

  3. Kannan S, Kishawy HA, Balazinski M (2005) Flank wear progression during machining metal matrix composites. J Manuf Sci Eng 128:787–791

    Article  Google Scholar 

  4. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46:1795–1803. doi:10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  5. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip-tool interface friction to predict cutting forces in machining of al/SiCp composites. Int J Mach Tools Manuf 49:690–700. doi:10.1016/j.ijmachtools.2009.03.003

    Article  Google Scholar 

  6. Sikder S, Kishawy H a. (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59:95–103. doi:10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  7. Ghandehariun A, Kishawy H, Balazinski M (2016) On machining modeling of metal matrix composites: a novel comprehensive constitutive equation. Int J Mech Sci 107:235–241. doi:10.1016/j.ijmecsci.2016.01.020

    Article  Google Scholar 

  8. Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232. doi:10.1016/j.jmatprotec.2008.01.041

    Article  Google Scholar 

  9. Seeman M, Ganesan G, Karthikeyan R, Velayudham A (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Technol 48:613–624. doi:10.1007/s00170-009-2297-z

    Article  Google Scholar 

  10. Monaghan J, Brazil D (1998) Modelling the flow processes of a particle reinforced metal matrix composite during machining. Compos Part A Appl Sci Manuf 29:87–99. doi:10.1016/S1359-835X(97)00047-X

    Article  Google Scholar 

  11. Ramesh MV, Chan KC, Lee WB, Cheung CF (2001) Finite-element analysis of diamond turning of aluminium matrix composites. Compos Sci Technol 61:1449–1456. doi:10.1016/S0266-3538(01)00047-1

    Article  Google Scholar 

  12. El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites part IV. Residual stresses in the machined workpiece J Mater Process Technol 152:23–34. doi:10.1016/j.jmatprotec.2004.01.061

    Article  Google Scholar 

  13. Zhu Y, Kishawy HA (2005) Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tools Manuf 45:389–398. doi:10.1016/j.ijmachtools.2004.09.013

    Article  Google Scholar 

  14. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool–particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47:1497–1506. doi:10.1016/j.ijmachtools.2006.12.004

    Article  Google Scholar 

  15. Zhou L, Huang ST, Wang D, Yu XL (2010) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 52:619–626. doi:10.1007/s00170-010-2776-2

    Article  Google Scholar 

  16. Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos Part A Appl Sci Manuf 40:1231–1239. doi:10.1016/j.compositesa.2009.05.017

    Article  Google Scholar 

  17. Umer U, Ashfaq M, Qudeiri JAA et al (2015) Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements. Int J Adv Manuf Technol 78:1171–1179. doi:10.1007/s00170-014-6715-5

    Article  Google Scholar 

  18. Wang T, Xie L, Wang X (2015) Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol. doi:10.1007/s00170-015-6876-x

    Google Scholar 

  19. Ghandehariun A, Kishawy HA, Umer U, Hussein HM (2016) Analysis of tool-particle interactions during cutting process of metal matrix composites. Int J Adv Manuf Technol 82:143–152. doi:10.1007/s00170-015-7346-1

    Article  Google Scholar 

  20. Ghandehariun A, Kishawy HA, Umer U, Hussein HMA (2016) On tool–workpiece interactions during machining metal matrix composites: investigation of the effect of cutting speed. Int J Adv Manuf Technol 84:2423–2435. doi:10.1007/s00170-015-7869-5

    Article  Google Scholar 

  21. Ghandehariun A, Nazzal M, Kishawy HA, Umer U (2016) On modeling the deformations and tool-workpiece interactions during machining metal matrix composites. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9776-9

    Google Scholar 

  22. Zhou L, Cui C, Zhang PF, Ma ZY (2016) Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9933-1

    Google Scholar 

  23. Jadhav MR, Dabade UA (2016) Modelling and simulation of Al/SiCp MMCs during hot machining. ASME 2016 Int. Mech. Eng. Congr. Expo. p V002T02A023

  24. Pramanik A, Zhang LC (2017) Particle fracture and debonding during orthogonal machining of metal matrix composites. Adv Manuf. doi:10.1007/s40436-017-0170-0

    Google Scholar 

  25. Liu J, Kevin Chou Y (2007) Cutting tool temperature analysis in heat-pipe assisted composite machining. J Manuf Sci Eng 129:902. doi:10.1115/1.2752528

    Article  Google Scholar 

  26. Lesuer DR, Kay G, LeBlanc M (1999) Modeling large strain, high rate deformation in metals. Eng Res Dev Technol

  27. Fathipour M, Zoghipour P, Tarighi J, Yousefi R (2012) Investigation of reinforced sic particles percentage on machining force of metal matrix composite. Mod Appl Sci 6:9–20. doi:10.5539/mas.v6n8p9

    Article  Google Scholar 

  28. (2014) ABAQUS V 6.14 Documentation. Dassault Systemes

  29. Dandekar CR (2010) Multi-scale modeling and laser-assisted machining of metal matrix composites. Purdue University

  30. Monaghan J, Brazil D (1997) Modeling the sub-surface damage associated with the machining of a particle reinforced MMC. Comput Mater Sci 9:99–107. doi:10.1016/S0927-0256(97)00063-3

    Article  Google Scholar 

  31. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites part II: workpiece surface integrity. J Mater Process Technol 83:277–285. doi:10.1016/S0924-0136(98)00072-7

    Article  Google Scholar 

  32. Hung NP, Venkatesh VC, Loh NL (1999) Machining of metal matrix composites. Manuf Eng Mater Process 53:295–356

    Google Scholar 

  33. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites part I: tool performance. J Mater Process Technol 83:151–158. doi:10.1016/S0924-0136(98)00054-5

    Article  Google Scholar 

  34. Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259:1225–1234. doi:10.1016/j.wear.2005.02.094

    Article  Google Scholar 

  35. Chambers AR (1996) The machinability of light alloy MMCs. Compos Part A Appl Sci Manuf 27:143–147. doi:10.1016/1359-835X(95)00001-I

    Article  Google Scholar 

  36. Quan YM, Zhou ZH, Ye BY (1999) Cutting process and chip appearance of aluminum matrix composites reinforced by SiC particle. J Mater Process Technol 91:231–235. doi:10.1016/S0924-0136(98)00444-0

    Article  Google Scholar 

  37. Kannan S, Kishawy HA, Deiab IM, Surappa MK (2006) On the role of reinforcements on tool performance during cutting of metal matrix composites. J Manuf Process 8:67–75

    Article  Google Scholar 

  38. Shaw MC (2013) Metal cutting principles 2E C. Oxford Science, Oxford

    Google Scholar 

  39. Takeyama H, Murata R (1963) Basic investigation of tool wear. J Eng Ind 85:33–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usama Umer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umer, U., Kishawy, H., Ghandehariun, A. et al. On modeling tool performance while machining aluminum-based metal matrix composites. Int J Adv Manuf Technol 92, 3519–3530 (2017). https://doi.org/10.1007/s00170-017-0368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0368-0

Keywords

Navigation