Skip to main content
Log in

Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Consideration of form errors involves real machining features in tolerance modeling but increases uncertainties in functional requirement estimation, when tackling the trade-off between the cost and precision performance. In this paper, a statistical tolerance allocation method is presented to solve this problem. First of all, a top-down stepwise designing procedure is designed for complex products, and a combination of Jacobian matrix and Skin Model Shapes is applied in modeling the mechanical joints. Then, rigid assembly simulations of point-based surfaces are further advanced to provide an accurate estimation of the assembly state, through considering physical constraints and termination conditions. A mini-batch gradient descent method and a backtracking strategy are also proposed to promote computational efficiency. Finally, a deep Q-network is implemented in optimal computation after characterizing the systematic state, action domain, and reward function. The general tolerance scheme is then achieved using the trained Q-network. The results of 6 experiments each with 200 samples show the proposed method is capable of assessing tolerance schemes with 35.2% and 47.2% lower manufacturing costs and 16.7% and 28.3% higher precision maintenance on average than conventional particle swarm optimization and Monte Carlo method respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gust P, Sersch A, Steger T, Schluer C (2019) Analysis of approaches of tolerance allocation regarding to economic efficiency. In: Proceedings of the international conference on engineering design, ICED, vol 1, pp 3481–3490, https://doi.org/10.1017/dsi.2019.355

  2. Roy U, Liu CR, Woo TC (1991) Review of dimensioning and tolerancing: representation and processing. Comput Aided Des 23(7):466–483. https://doi.org/10.1016/0010-4485(91)90045-X

    Article  MATH  Google Scholar 

  3. Nigam SD, Turner JU (1995) Review of statistical approaches to tolerance analysis. Comput Aided Des 27(1):6–15. https://doi.org/10.1016/0010-4485(95)90748-5

    Article  MATH  Google Scholar 

  4. Lin KS, Chan KY, Lee JJ (2018) Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mech Mach Theory 124:73–91. https://doi.org/10.1016/j.mechmachtheory.2017.12.028

    Article  Google Scholar 

  5. Hong YS, Chang TC (2002) A comprehensive review of tolerancing research. Int J Prod Res 40(11):2425–2459. https://doi.org/10.1080/00207540210128242

    Article  MATH  Google Scholar 

  6. Polini W (2012) Taxonomy of models for tolerance analysis in assembling. Int J Prod Res 50 (7):2014–2029. https://doi.org/10.1080/00207543.2011.576275

    Article  Google Scholar 

  7. Cao Y, Liu T, Yang J (2018) A comprehensive review of tolerance analysis models. Int J Adv Manuf Technol 97(5-8):3055–3085. https://doi.org/10.1007/s00170-018-1920-2

    Article  Google Scholar 

  8. Chase KW, Parkinson AR (1991) A survey of research in the application of tolerance analysis to the design of mechanical assemblies. https://doi.org/10.1007/BF01580066

  9. Chase KW, Gao J, Magleby SP (1995) General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments. J Des Manuf

  10. Marziale M, Polini W (2009) A review of two models for tolerance analysis of an assembly: vector loop and matrix. Int J Adv Manuf Technol 43(11-12):1106–1123. https://doi.org/10.1007/s00170-008-1790-0

    Article  Google Scholar 

  11. Mansuy M, Giordano M, Davidson JK (2013) Comparison of two similar mathematical models for tolerance analysis: T-map and deviation domain. J Mech Des Trans ASME. https://doi.org/10.1115/1.4024980

  12. Giordano M, Samper S, Petit JP (2007) Tolerance analysis and synthesis by means of deviation domains, axi-symmetric cases. In: Models for computer aided tolerancing in design and manufacturing - selected conference papers from the 9th CIRP international seminar on computer-aided tolerancing, CAT 2005, September, pp 85–94. https://doi.org/10.1007/1-4020-5438-6_10

  13. Schleich B, Wartzack S (2015) Evaluation of geometric tolerances and generation of variational part representatives for tolerance analysis. Int J Adv Manuf Technol 79(5-8):959–983. https://doi.org/10.1007/s00170-015-6886-8

    Article  Google Scholar 

  14. Zhu H, Zhou X, Li H (2016) A novel tolerance analysis for mechanical assemblies based on convex method and non-probabilistic set theory. Int J Adv Manuf Technol 83(9-12):1649–1657. https://doi.org/10.1007/s00170-015-7634-9

    Article  Google Scholar 

  15. Ameta G, Singh G, Davidson JK, Shah JJ (2018) Tolerance-maps to model composite positional tolerancing for patterns of features. J Comput Inf Sci Eng 18(3):1–9. https://doi.org/10.1115/1.4039473

    Article  Google Scholar 

  16. Ameta G, Serge S, Giordano M (2011) Comparison of spatial math models for tolerance analysis: tolerance-maps, deviation domain, and TTRS. J Comput Inf Sci Eng 11(2)

  17. Boyer M, Stewart NF (1991) Modeling spaces for toleranced objects. Int J Robot Res 10 (5):570–582. https://doi.org/10.1177/027836499101000512

    Article  Google Scholar 

  18. Gupta S, Turner JU (1993) Variational solid modeling for tolerance analysis. IEEE Comput Graph Appl 13(3):64–74. https://doi.org/10.1109/38.210493

    Article  Google Scholar 

  19. Desrochers A, Clément A (1994) A dimensioning and tolerancing assistance model for CAD/CAM systems. Int J Adv Manuf Technol. https://doi.org/10.1007/BF01748479

  20. Desrochers A (2003) A CAD/CAM representation model applied to tolerance transfer methods. J Mech Des Trans ASME 125(1):14–22. https://doi.org/10.1115/1.1543974

    Article  Google Scholar 

  21. Whitney DE, Gilbert OL, Jastrzebski M (1994) Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies. Res Eng Des 6 (4):191–210. https://doi.org/10.1007/BF01608399

    Article  Google Scholar 

  22. Wang K, Yin Y, Du S, Xi L, Xia T (2018) State space modeling of multi-scale variation propagation in machining process using matrix model. In: IEEE international conference on industrial engineering and engineering management, DOI https://doi.org/10.1109/IEEM.2017.8289995, (to appear in print)

  23. Teissandier D, Couétard Y, Gérard A (1999) Computer aided tolerancing model: proportioned assembly clearance volume. CAD Comput Aided Des 31(13):805–817. https://doi.org/10.1016/S0010-4485(99)00055-X

    Article  MATH  Google Scholar 

  24. Jin S, Chen H, Li Z, Lai X (2015) A small displacement torsor model for 3D tolerance analysis of conical structures. Proc Inst Mech Eng C J Mech Eng Sci. https://doi.org/10.1177/0954406214560781

  25. Polini W, Moroni G (2015) Manufacturing signature for tolerance analysis. J Comput Inf Sci Eng. https://doi.org/10.1115/1.4028937

  26. Corrado A, Polini W (2017) Manufacturing signature in jacobian and torsor models for tolerance analysis of rigid parts. Robot Comput Integr Manuf. https://doi.org/10.1016/j.rcim.2016.11.004

  27. Corrado A, Polini W (2017). Manufacturing signature in variational and vector-loop models for tolerance analysis of rigid parts. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-8947-z

  28. Laperriėre L, Ghie W, Desrochers A (2002) Statistical and deterministic tolerance analysis and synthesis using a unified Jacobian-torsor model. CIRP Ann Manuf Technol 51(1):417–420. https://doi.org/10.1016/S0007-8506(07)61550-9

    Article  MATH  Google Scholar 

  29. Shen W, Pang K, Liu C, Ge M, Zhang Y, Wang X (2015) The quality control method for remanufacturing assembly based on the Jacobian-torsor model. Int J Adv Manuf Technol 81(1-4):253–261. https://doi.org/10.1007/s00170-015-7194-z

    Article  Google Scholar 

  30. Anwer N, Schleich B, Mathieu L, Wartzack S (2014). In: CIRP annals - manufacturing technology. https://doi.org/10.1016/j.cirp.2014.03.103. From solid modelling to skin model shapes: shifting paradigms in computer-aided tolerancing

  31. Schleich B, Wartzack S, Anwer N, Mathieu L (2015) Skin Model Shapes: offering new potentials for modelling product shape variability. https://doi.org/10.1115/DETC2015-46701

  32. Liu T, Cao YL, Zhao Q, Yang J, Cui L (2019) Assembly tolerance analysis based on the Jacobian model and skin model shapes. Assem Autom 39(2):245–253. https://doi.org/10.1108/AA-10-2017-128

    Article  Google Scholar 

  33. Schleich B, Wartzack S (2015). Approaches for the assembly simulation of skin model shapes. CAD Comput Aided Des. https://doi.org/10.1016/j.cad.2015.03.004

  34. Schleich B, Wartzack S (2018) Novel approaches for the assembly simulation of rigid Skin Model Shapes in tolerance analysis. CAD Comput Aided Des. https://doi.org/10.1016/j.cad.2018.04.002

  35. Voelcker HB (1998) The current state of affairs in dimensional tolerancing: 1997. Integr Manuf Syst 9(4):205–217. https://doi.org/10.1108/09576069810217793

    Article  Google Scholar 

  36. Islam MN (2004) Functional dimensioning and tolerancing software for concurrent engineering applications. Comput Ind 54(2):169–190. https://doi.org/10.1016/j.compind.2003.09.006

    Article  Google Scholar 

  37. Prabhaharan G, Asokan P, Ramesh P, Rajendran S (2004) Genetic-algorithm-based optimal tolerance allocation using a least-cost model. Int J Adv Manuf Technol 24(9-10):647–660. https://doi.org/10.1007/s00170-003-1606-1

    Article  Google Scholar 

  38. Hung TC, Chan KY (2013) Multi-objective design and tolerance allocation for single- and multi-level systems. J Intell Manuf 24(3):559–573. https://doi.org/10.1007/s10845-011-0608-3

    Article  Google Scholar 

  39. Hallmann M, Schleich B, Wartzack S (2020) From tolerance allocation to tolerance-cost optimization: a comprehensive literature review. Int J Adv Manuf Technol 107(11-12):4859–4912. https://doi.org/10.1007/s00170-020-05254-5

    Article  Google Scholar 

  40. Anselmetti B (2006) Generation of functional tolerancing based on positioning features. CAD Comput Aided Des 38(8):902–919. https://doi.org/10.1016/j.cad.2006.05.005

    Article  Google Scholar 

  41. Dantan JY, Qureshi AJ (2009) Worst-case and statistical tolerance analysis based on quantified constraint satisfaction problems and Monte Carlo simulation. CAD Comput Aided Des 41(1):1–12. https://doi.org/10.1016/j.cad.2008.11.003

    Article  Google Scholar 

  42. Anselmetti B (2010) Part optimization and tolerances synthesis. Int J Adv Manuf Technol 48 (9-12):1221–1237. https://doi.org/10.1007/s00170-009-2355-6

    Article  Google Scholar 

  43. Wang Y, Calhoun S, Bosman L, Sutherland JW (2019) Tolerance allocations on products: a life cycle engineering perspective. Procedia CIRP 80:174–179. https://doi.org/10.1016/j.procir.2019.01.089

    Article  Google Scholar 

  44. Shan A, Roth RN, Wilson RJ (2003) Genetic algorithms in statistical tolerancing. Math Comput Model 38(11-13):1427–1436. https://doi.org/10.1016/S0895-7177(03)90146-4

    Article  MathSciNet  MATH  Google Scholar 

  45. Singh PK, Jain SC, Jain PK (2005) Advanced optimal tolerance design of mechanical assemblies with interrelated dimension chains and process precision limits. Comput Ind 56(2):179–194. https://doi.org/10.1016/j.compind.2004.06.008

    Article  Google Scholar 

  46. Balamurugan C, Saravanan A, Dinesh Babu P, Jagan S, Ranga Narasimman S (2017) Concurrent optimal allocation of geometric and process tolerances based on the present worth of quality loss using evolutionary optimisation techniques. Res Eng Des 28(2):185–202. https://doi.org/10.1007/s00163-016-0230-7

    Article  Google Scholar 

  47. Chase KW, Greenwood WH, Loosli BG, Hauglund LF (1990) Least cost tolerance allocation for mechanical assemblies with automated process selection. Manuf Rev 3(1):49–59

    Google Scholar 

  48. SivaKumar M, Stalin B (2009) Optimum tolerance synthesis for complex assembly with alternative process selection using Lagrange multiplier method. Int J Adv Manuf Tech 44 (3-4):405–411. https://doi.org/10.1007/s00170-008-1866-x

    Article  Google Scholar 

  49. Tlija M, Ghali M, Aifaoui N (2019) Integrated CAD tolerancing model based on difficulty coefficient evaluation and Lagrange multiplier. Int J Adv Manuf Technol 101(9-12):2519–2532. https://doi.org/10.1007/s00170-018-3140-1

    Article  Google Scholar 

  50. dong Wang G, Yang Y, Wang W, Si-Chao LV (2016) Variable coefficients reciprocal squared model based on multi-constraints of aircraft assembly tolerance allocation. Int J Adv Manuf Technol 82(1-4):227–234. https://doi.org/10.1007/s00170-015-7299-4

    Article  Google Scholar 

  51. Jawahar N, Sivasankaran R, Ramesh M (2017) Optimal Pareto front for manufacturing tolerance allocation model. Proc Inst Mech Eng B J Eng Manuf 231(7):1190–1203. https://doi.org/10.1177/0954405415586548

    Article  Google Scholar 

  52. Muthu P, Dhanalakshmi V, Sankaranarayanasamy K (2009) Optimal tolerance design of assembly for minimum quality loss and manufacturing cost using metaheuristic algorithms. Int J Adv Manuf Technol 44(11-12):1154–1164. https://doi.org/10.1007/s00170-009-1930-1

    Article  Google Scholar 

  53. Zeng W, Rao Y, Wang P (2017) An effective strategy for improving the precision and computational efficiency of statistical tolerance optimization. Int J Adv Manuf Technol 92(5-8):1933–1944. https://doi.org/10.1007/s00170-017-0256-7

    Article  Google Scholar 

  54. Zhang C, Wang HPB (1993) Integrated tolerance optimisation with simulated annealing. Int J Adv Manuf Tech 8(3):167–174. https://doi.org/10.1007/BF01749907

    Article  Google Scholar 

  55. Singh PK, Jain SC, Jain PK (2005) Comparative study of genetic algorithm and simulated annealing for optimal tolerance design formulated with discrete and continuous variables. Proc Inst Mech Eng B J Eng Manuf 219(10):735–760. https://doi.org/10.1243/095440505X32643

    Article  Google Scholar 

  56. Kumaravel P, Anand S, Ullas U, Mohanram PV (2007) Cost optimization of process tolerance allocation-a tree based approach. Int J Adv Manuf Technol 34(7-8):703–713. https://doi.org/10.1007/s00170-006-0641-0

    Article  Google Scholar 

  57. Peng HP, Jiang XQ, Liu XJ (2008) Concurrent optimal allocation of design and process tolerances for mechanical assemblies with interrelated dimension chains. Int J Prod Res 46(24):6963–6979. https://doi.org/10.1080/00207540701427037

    Article  Google Scholar 

  58. Liu S, Jin Q, Dong Y, Wang Y (2017) A closed-form method for statistical tolerance allocation considering quality loss and different kinds of manufacturing cost functions. Int J Adv Manuf Technol 93(5-8):2801–2811. https://doi.org/10.1007/s00170-017-0681-7

    Article  Google Scholar 

  59. Singh PK, Jain PK, Jain SC (2004) A genetic algorithm-based solution to optimal tolerance synthesis of mechanical assemblies with alternative manufacturing processes: focus on complex tolerancing problems. Int J Prod Res 42(24):5185–5215. https://doi.org/10.1080/00207540410001733931

    Article  MATH  Google Scholar 

  60. Carrino L, Moroni G, Polini W, Semeraro Q (2003) Machining planning for tolerance synthesis. Mach Sci Technol 7(3):333–347. https://doi.org/10.1081/MST-120025282

    Article  Google Scholar 

  61. Dantan JY, Mathieu L, Ballu A, Martin P (2005) Tolerance synthesis: quantifier notion and virtual boundary. CAD Comput Aided Des 37(2):231–240. https://doi.org/10.1016/j.cad.2004.06.008

    Article  Google Scholar 

  62. Xie K, Wells L, Camelio JA, Youn BD (2007) Variation propagation analysis on compliant assemblies considering contact interaction. J Manuf Sci Eng Trans ASME 129(5):934–942. https://doi.org/10.1115/1.2752829

    Article  Google Scholar 

  63. Liao X, Wang GG (2007) Non-linear dimensional variation analysis for sheet metal assemblies by contact modeling. Finite Elem Anal Des 44(1-2):34–44. https://doi.org/10.1016/j.finel.2007.08.009

    Article  Google Scholar 

  64. Jareteg C, Wȧrmefjord K, Sȯderberg R, Lindkvist L, Carlson J, Cromvik C, Edelvik F (2014) Variation simulation for composite parts and assemblies including variation in fiber orientation and thickness. Procedia CIRP 23(C):235–240. https://doi.org/10.1016/j.procir.2014.10.069

    Article  Google Scholar 

  65. Sutton RS (1992) Introduction: the challenge of reinforcement learning. https://doi.org/10.1007/BF00992695

  66. Dayan P, Niv Y (2008) Reinforcement learning: the good, the bad and the ugly. https://doi.org/10.1016/j.conb.2008.08.003

  67. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38. https://doi.org/10.1109/MSP.2017.2743240. arXiv:1502.05477

    Article  Google Scholar 

  68. Du KL, Swamy MN (2014) Neural networks and statistical learning, vol 9781447155. Springer, Berlin. https://doi.org/10.1007/978-1-4471-5571-3

    Book  Google Scholar 

  69. Deisenroth MP, Rasmussen CE (2011) PILCO: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th international conference on machine learning, ICML 2011, January, vol 2011, pp 465–472

  70. Schulman J, Levine S, Moritz P, Jordan M, Abbeel P (2015) Trust region policy optimization. In: 32nd international conference on machine learning, ICML 2015, vol 3, pp 1889–1897. arXiv:1502.05477

  71. Gu S, Lillicrap T, Sutskever U, Levine S (2016) Continuous deep q-learning with model-based acceleration. In: 33rd international conference on machine learning, ICML 2016 6(March), pp 4135–4148. arXiv:1603.00748

  72. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn. https://doi.org/10.1007/bf00992698

  73. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533. https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  74. Levine S, Koltun V (2013) Guided policy search. In: 30th International conference on machine learning, ICML 2013, PART 2, pp 1038–1046

  75. Lin LJ (1992) Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach Learn 8(3):293–321. https://doi.org/10.1023/A:1022628806385

    Google Scholar 

  76. Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized experience replay. In: 4th international conference on learning representations, ICLR 2016 - Conference track proceedings. arXiv:1511.05952

  77. De Bruin T, Kober J, Tuyls K, Babuška R (2018) Experience selection in deep reinforcement learning for control. J Mach Learn Res 19(August):1–56

    MathSciNet  MATH  Google Scholar 

  78. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-Learning. In: 30th AAAI conference on artificial intelligence, AAAI 2016, August, pp 2094–2100. arXiv:1509.06461

  79. Wang Z, Schaul T, Hessel M, Van Hasselt H, Lanctot M, De Frcitas N (2016) Dueling network architectures for deep reinforcement learning. In: 33rd international conference on machine learning, ICML 2016, vol 4, pp 2939–2947. arXiv:1511.06581

  80. Qiu C, Yu FR, Yao H, Jiang C, Xu F, Zhao C (2019) Blockchain-based software-defined Industrial Internet of Things: a dueling deep Q-learning approach. IEEE Internet Things J 6(3):4627–4639. https://doi.org/10.1109/JIOT.2018.2871394

    Article  Google Scholar 

  81. Hausknecht M, Stone P (2015) Deep recurrent Q-learning for partially observable MDPs. In: AAAI Fall Symposium - Technical Report, vol FS-15-06, pp 29–37. arXiv:1507.06527

  82. Thomas AW, Heekeren HR, Mu̇ller KR, Samek W (2019) Analyzing neuroimaging data through recurrent deep learning models. Front Neurosci 13(December):1–18. https://doi.org/10.3389/fnins.2019.01321. arXiv:1810.09945

    Article  Google Scholar 

  83. Mnih V, Badia AP, Mirza L, Graves A, Harley T, Lillicrap TP, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: 33rd international conference on machine learning, ICML 2016, vol 4, pp 2850–2869. arXiv:1602.01783

  84. Zhao X, Ding S, An Y, Jia W (2019) Applications of asynchronous deep reinforcement learning based on dynamic updating weights. Appl Intell 49(2):581–591. https://doi.org/10.1007/s10489-018-1296-x

    Article  Google Scholar 

  85. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous control with deep reinforcement learning. In: 4th international conference on learning representations, ICLR 2016 - conference track proceedings, September. arXiv:1509.02971

  86. Jiang N, Deng Y, Simeone O, Nallanathan A (2019) Cooperative deep reinforcement learning for multiple-group NB-IoT networks optimization. In: ICASSP, IEEE international conference on acoustics, speech and signal processing - proceedings. https://doi.org/10.1109/ICASSP.2019.8682697. arXiv:1810.11729

  87. Park S, Suh T (2019) DQN-based OpenCL workload partition for performance optimization. J Supercomput. https://doi.org/10.1007/s11227-019-02766-0

  88. Zhang Y, Cao J, Tao L, Xu S, Wei M, Zhang X (2020) An improved deep Q-learning for intelligent transmitter control system. In: Lecture notes in electrical engineering, vol 594, pp 344–351. https://doi.org/10.1007/978-981-32-9698-5_39

Download references

Funding

This research was supported by the National Key R&D Program of China (Grant No. 2018YFB1700700), and the National Natural Science Foundation of China (Grant No. 51875516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lemiao Qiu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Zhang, S., Qiu, L. et al. Statistical tolerance allocation design considering form errors based on rigid assembly simulation and deep Q-network. Int J Adv Manuf Technol 111, 3029–3045 (2020). https://doi.org/10.1007/s00170-020-06283-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06283-w

Keywords

Navigation