Skip to main content

Advertisement

Log in

An effective strategy for improving the precision and computational efficiency of statistical tolerance optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Statistical tolerance optimization is a more practical and economical method for assigning proper tolerances on components in product design. Monte Carlo simulation is the simplest method to simulate probability distributions of random variables (tolerances). However, the precision of this method is proportional to the root of sample size, and a large sample size leads to excessive computational time. Moreover, during the entire process of statistical tolerance optimization, the optimum value cannot be found when the precision of fitness in each iteration is not sufficiently high, and when these inaccurate values are used in many generations with large number of assembly analyses. In this paper, a strategy with multiple sample testing is proposed to solve this problem by improving the precision of fitness and penalty values and reducing the computational time cost. Based on this strategy, high precision of fitness could be obtained for the next generation using metaheuristic algorithms such as genetic algorithm, cuckoo search, and particle swarm optimization, and a feasible solution that satisfies all the constraints could be obtained. A practical industrial application is provided to demonstrate the effectiveness of the statistical tolerance optimization problem, and the experimental results confirm the efficiency of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceglarek D, Huang W, Zhou S, Ding Y, Kumar R, Zhou Y (2004) Time-based competition in multistage manufacturing: stream-of-variation analysis (SOVA) methodology—review. Int J Flex Manuf Syst 16(1):11–44

    Article  MATH  Google Scholar 

  2. Walter M, Spruegel T, Wartzack S (2015) Least cost tolerance allocation for systems with time-variant deviations. Procedia CIRP 27:1–9

    Article  Google Scholar 

  3. Hong Y, Chang T (2002) A comprehensive review of tolerancing research. Int J Prod Res 40(11):2425–2459

    Article  MATH  Google Scholar 

  4. Khodaygan S, Movahhedy M (2016) A comprehensive fuzzy feature-based method for worst case and statistical tolerance analysis. Int J Comput Integr Manuf 29(1):42–63

    Google Scholar 

  5. Chen H, Jin S, Li Z, Lai X (2014) A comprehensive study of three dimensional tolerance analysis methods. Comput Aided Des 53:1–13. doi:10.1016/j.cad.2014.02.014

    Article  Google Scholar 

  6. Nigam SD, Turner JU (1995) Review of statistical approaches to tolerance analysis. Comput Aided Des 27(1):6–15

    Article  MATH  Google Scholar 

  7. Ramos Barbero B, Pérez Azcona J, González Pérez J (2015) A tolerance analysis and optimization methodology. The combined use of 3D CAT, a dimensional hierarchization matrix and an optimization algorithm. Int J Adv Manuf Technol 81(1):371–385. doi:10.1007/s00170-015-7068-4

    Article  Google Scholar 

  8. Geetha K, Ravindran D, Kumar MS, Islam MN (2013) Multi-objective optimization for optimum tolerance synthesis with process and machine selection using a genetic algorithm. Int J Adv Manuf Technol 67(9):2439–2457. doi:10.1007/s00170-012-4662-6

    Article  Google Scholar 

  9. Sivakumar K, Balamurugan C, Ramabalan S (2011) Simultaneous optimal selection of design and manufacturing tolerances with alternative manufacturing process selection. Comput Aided Des 43(2):207–218

    Article  Google Scholar 

  10. Muthu P, Dhanalakshmi V, Sankaranarayanasamy K (2009) Optimal tolerance design of assembly for minimum quality loss and manufacturing cost using metaheuristic algorithms. Int J Adv Manuf Technol 44(11–12):1154–1164. doi:10.1007/s00170-009-1930-1

    Article  Google Scholar 

  11. Hung T-C, Chan K-Y (2013) Multi-objective design and tolerance allocation for single-and multi-level systems. J Intell Manuf 24(3):559–573

    Article  Google Scholar 

  12. Kumar LR, Padmanaban KP, Balamurugan C (2016) Optimal tolerance allocation in A complex assembly using Evolutionary algorithms. Int J Simul Model 15(1):121–132. doi:10.2507/ijsimm15(1)10.331

    Article  Google Scholar 

  13. Zhao YM, Liu DS, Wen ZJ (2016) Optimal tolerance design of product based on service quality loss. Int J Adv Manuf Technol 82(9–12):1715–1724. doi:10.1007/s00170-015-7480-9

    Article  Google Scholar 

  14. Wang G-d, Yang Y, Wang W, Si-Chao LV (2016) Variable coefficients reciprocal squared model based on multi-constraints of aircraft assembly tolerance allocation. Int J Adv Manuf Technol 82(1):227–234. doi:10.1007/s00170-015-7299-4

    Article  Google Scholar 

  15. Liu SG, Jin Q, Liu C, Xie RJ (2013) Analytical method for optimal component tolerances based on manufacturing cost and quality loss. Proc Inst Mech Eng Part B-J Eng Manuf 227(10):1484–1491. doi:10.1177/0954405413488769

    Article  Google Scholar 

  16. Liu S-G, Jin Q, Wang P, Xie R-J (2014) Closed-form solutions for multi-objective tolerance optimization. Int J Adv Manuf Technol 70(9):1859–1866. doi:10.1007/s00170-013-5437-4

    Article  Google Scholar 

  17. Cheng KM, Tsai JC (2013) Optimal statistical tolerance allocation for reciprocal exponential cost-tolerance function. Proc Inst Mech Eng Part B-J Eng Manuf 227(B5):650–656. doi:10.1177/0954405412473720

    Article  Google Scholar 

  18. Xu S, Keyser J (2016) Statistical geometric computation on tolerances for dimensioning. Comput Aided Des 70:193–201. doi:10.1016/j.cad.2015.06.012

    Article  Google Scholar 

  19. Beaucaire P, Gayton N, Duc E, Dantan JY (2013) Statistical tolerance analysis of over-constrained mechanisms with gaps using system reliability methods. Comput Aided Des 45(12):1547–1555. doi:10.1016/j.cad.2013.06.011

    Article  Google Scholar 

  20. Dantan J-Y, Qureshi A-J (2009) Worst-case and statistical tolerance analysis based on quantified constraint satisfaction problems and Monte Carlo simulation. Comput Aided Des 41(1):1–12

    Article  Google Scholar 

  21. Kharoufeh J, Chandra M (2002) Statistical tolerance analysis for non-normal or correlated normal component characteristics. Int J Prod Res 40(2):337–352

    Article  MATH  Google Scholar 

  22. Kuo CH, Tsai JC New tolerance analysis model for normal mean shift in manufacturing process. In: Materials Science Forum, 2008. Trans Tech Publ, pp 339–350

  23. Jin Q, Liu S, Wang P (2015) Optimal tolerance design for products with non-normal distribution based on asymmetric quadratic quality loss. Int J Adv Manuf Technol 78(1):667–675. doi:10.1007/s00170-014-6681-y

    Article  Google Scholar 

  24. Ahmed S (2005) Assessing the process capability index for non-normal processes. Journal of Statistical Planning and Inference 129(1):195–206

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee J, Johnson GE (1993) Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation. Comput Aided Des 25(9):601–611

    Article  MATH  Google Scholar 

  26. Iannuzzi M, Sandgren E (1996) Tolerance optimization using genetic algorithms: Benchmarking with manual analysis. In: Computer-aided Tolerancing. Springer, pp 219–234

  27. Skowronski VJ, Turner JU (1996) Estimating gradients for statistical tolerance synthesis. Comput Aided Des 28(12):933–941

    Article  Google Scholar 

  28. Skowronski VJ, Turner JU (1997) Using Monte Carlo variance reduction in statistical tolerance synthesis. Comput Aided Des 29(1):63–69

    Article  Google Scholar 

  29. Wu F, Dantan J-Y, Etienne A, Siadat A, Martin P (2009) Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization. Comput Ind Eng 56(4):1402–1413

    Article  Google Scholar 

  30. Sao T (1999) Computer-aided tolerancing optimization design. Zhejiang University press, Hangzhou

    Google Scholar 

  31. Dong Z, Hu W, Xue D (1994) New production cost-tolerance models for tolerance synthesis. J Manuf Sci Eng 116(2):199–206

    Google Scholar 

  32. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Nature & Biologically Inspired Computing. NaBIC 2009. World Congress on, 2009. IEEE, pp 210–214

  33. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation 1(4):330–343

    Article  MATH  Google Scholar 

  34. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Rao, Y. & Wang, P. An effective strategy for improving the precision and computational efficiency of statistical tolerance optimization. Int J Adv Manuf Technol 92, 1933–1944 (2017). https://doi.org/10.1007/s00170-017-0256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0256-7

Keywords

Navigation