Skip to main content

Advertisement

Log in

Research advances in high-energy TIG arc welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Through collecting, sorting, and analysing the research data of tungsten inert gas (TIG) welding in China and abroad, the modified TIG welding and ways to realise the improvement of the arc energy density are summarised. Based on the existing literature, two methods have been employed to improve the arc energy density. One is controlling and reducing the arc space, i.e., to compress and constrain the arc. The other is to increase the number and energy of the particles in the arc. The primary techniques to achieve the goals mentioned above are the following: adding energy to the arc, changing the arc ionisation, and increasing the arc heat dissipation. Additionally, it is indicated that further studying the mechanism of the arc energy density, especially the shape and energy distribution of the arc at the microscopic level, will provide fresh perspectives in the efficient production of TIG welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Vidyarthy RS, Dwivedi DK (2016) Activating flux tungsten inert gas welding for enhanced weld penetration. J Manuf Process 22:211–228. https://doi.org/10.1016/j.jmapro.2016.03.012

    Article  Google Scholar 

  2. Venkatesan G, Muthupandi V, Justine J (2017) Activated TIG welding of AISI 304L using mono- and tri-component fluxes. Int J Adv Manuf Technol 93:329–336. https://doi.org/10.1007/s00170-016-9002-9

    Article  Google Scholar 

  3. Dey HC, Albert SK, Bhaduri AK, Mudali UK (2013) Activated flux TIG welding of titanium. Weld World 57:903–912. https://doi.org/10.1007/s40194-013-0084-9

    Article  Google Scholar 

  4. Qin B, Yin FC, Xie FX, Shen J, Xie JC, Wu D (2019) Effects and distribution of TiC on the nanoparticle strengthening A-TIG welded AZ31 magnesium alloy joints. Materials Research Express 6(2):1–12

    Google Scholar 

  5. Gao XG, Dong JH, Han X (2017) Effect of RE2O3 (RE = La, Ce) fluxes on A-TIG welding of Ti6Al4V. Int J Adv Manuf Technol 91(1–4):1181–1188. https://doi.org/10.1007/s00170-016-9826-3

    Article  Google Scholar 

  6. Lin HL, Wu TM, Cheng CM (2014) Effects of flux precoating and process parameter on welding performance of Inconel 718 alloy TIG welds. J Mater Eng Perform 23(1):125–132. https://doi.org/10.1007/s11665-013-0756-z

    Article  Google Scholar 

  7. Surya DY, Vasantharaja P, Riedlsperger F, Nagaraju S, Vasudevan M (2019) Zone-wise investigation of creep behaviour 9Cr-1Mo steel weld joints. Mater Sci Technol 35(2):155–172. https://doi.org/10.1080/02670836.2018.1545283

    Article  Google Scholar 

  8. Kumar SM, Shanmugam NS (2018) Studies on the weldability, mechanical properties and microstructural characterization of activated flux TIG welding of AISI 321 austenitic stainless steel. Mater Rese Exp, 5(10) DOI: https://doi.org/10.1088/2053-1591/aad99f

  9. Pandey C, Mahapatra MM, Kumar P, Saini N, Thakre JG, Vidyarthy RS, Narang HK (2018) A brief study on delta-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch Civil Mech Eng 18(3):713–722. https://doi.org/10.1016/j.acme.2017.12.002

    Article  Google Scholar 

  10. Xie FX, Shen J, Song HY, Xie X (2018) Effects of cerium and SiC mixed particles on nanoparticle strengthening activated TIG-welded AZ31 alloy joints. J Mater Res 33(24):4340–4348. https://doi.org/10.1557/jmr.2018.404

    Article  Google Scholar 

  11. Fuzeau J, Vasudevan M, Maduraimuthu V (2016) Optimization of welding process parameters for reduced activation ferritic-martensitic (RAFM) steel. Trans Indian Inst Metals 69(8):1493–1499. https://doi.org/10.1007/s12666-015-0717-3

    Article  Google Scholar 

  12. Joseph J, Muthukumaran S (2017) Optimization of activated TIG welding parameters for improving weld joint strength of AISI 4135 PM steel by genetic algorithm and simulated annealing. Int J Adv Manuf Technol 93(1–4):23–34. https://doi.org/10.1007/s00170-015-7599-8

    Article  Google Scholar 

  13. Vidyarthy RS, Dwivedi DK (2018) Microstructure evolution and Charpy toughness relationship of A-TIG weld fusion zone for varying tempering time. Trans Indian Inst Metals 71(5):1287–1300. https://doi.org/10.1007/s12666-017-1266-8

    Article  Google Scholar 

  14. Shyu SW, Huang HY, Tseng KH, Chou CP (2008) Study of the performance of stainless steel A-TIG welds. J Mater Eng Perform 17(2):193–201. https://doi.org/10.1007/s11665-007-9139-7

    Article  Google Scholar 

  15. Vasudevan M (2017) Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels. J Mater Eng Perform 26(3):1325–1336. https://doi.org/10.1007/s11665-017-2517-x

    Article  Google Scholar 

  16. Zhang RH, Pan JL, Katayama S (2011) The mechanism of penetration increase in A-TIG welding. Front Mater Sci 5(2):109–118. https://doi.org/10.1007/s11706-011-0125-5

    Article  Google Scholar 

  17. Kobayashi K, Nishimura Y, Iijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M (2004) Practical application of high efficiency twin-arc TIG welding method (Sedar-TIG) for Pclng storage tank. Weld World 48(7–8):35–39. https://doi.org/10.1007/BF03266441

    Article  Google Scholar 

  18. Ding XP, Li H, Yang LJ, Gao Y, Wei HL (2014) Numerical analysis of arc characteristics in two-electrode GTAW. Int J Adv Manuf Technol 70(9–12):1867–1874. https://doi.org/10.1007/s00170-013-5443-6

    Article  Google Scholar 

  19. Schwedersky MB, Henrique Gonçalves R, Dutra JC, Reisgen U, Willms K (2018) Arc characteristic evaluation of the double-electrode GTAW process using high current values. Int J Adv Manuf Technol 98(1–4):929–936. https://doi.org/10.1007/s00170-018-2344-8

    Article  Google Scholar 

  20. Leng XS, Zhang GJ, Wu L (2006) The characteristic of twin-electrode TIG coupling arc pressure. J Phys D Appl Phys 39(6):1120–1126. https://doi.org/10.1088/0022-3727/39/6/017

    Article  Google Scholar 

  21. Zhang GJ, Xiong J, Gao HM, Wu L (2012) Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. J Quant Spectrosc Radiat Transf 113(15):1938–1945. https://doi.org/10.1016/j.jqsrt.2012.05.018

    Article  Google Scholar 

  22. Huang Y, Liu RL, Hao YZ (2018) Gas pool coupled activating TIG welding method with coupling arc electrode. Chin J Mech Eng 31:96. https://doi.org/10.1186/s10033-018-0297-3

    Article  Google Scholar 

  23. Yonglun S (2013) Research and development of high performance welding arc. Electric Weld Mach 43(3):1–5

    Google Scholar 

  24. Xie Y, Cai YC, Zhang X, Luo Z (2018) Characterization of keyhole gas tungsten arc welded AISI 430 steel and joint performance optimization. Int J Adv Manuf Technol 99:347–361. https://doi.org/10.1007/s00170-018-2257-6

    Article  Google Scholar 

  25. Schnick M, Fuentes J E, Zschetzsche J, et al. (2010) Cathode focussed TIG fundamentals and applications. 63rd International Conference of the International Institute of Welding, Istanbul. Document number XII-1985-10

  26. Lohse M, Füssel U, Schuster H, Friedel J, Schnick M (2013) Keyhole welding with CF-TIG (cathode focussed GTA). Welding in the World 57(5):735–741. https://doi.org/10.1007/s40194-013-0074-y

    Article  Google Scholar 

  27. Rosellini C, Jarvis L (2009) The keyhole TIG welding process: avalid alternative for valuable metal joints. Weld Int 23(8):616–621. https://doi.org/10.1080/09507110802543237

    Article  Google Scholar 

  28. Cui SW, Shi YH, Cui YX, Zhu T (2018) The impact toughness of novel keyhole TIG welded duplex stainless steel joints. Eng Fail Anal 94:226–231. https://doi.org/10.1016/j.engfailanal.2018.08.009

    Article  Google Scholar 

  29. Huang YF, Luo Z, Lei YC, Ao SS, He S, Zhang Y (2018) Dissimilar joining of AISI 304/Q345 steels in keyhole tungsten inert gas welding process. Int J Adv Manuf Technol 96:4041–4049. https://doi.org/10.1007/s00170-018-1791-6

    Article  Google Scholar 

  30. Fei ZY, Pan ZX, Cuiuri D, Li HJ, Wu BT, Ding DH, Su LH, Gazder AA (2018) Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel. J Manuf Process 32:482–493. https://doi.org/10.1016/j.jmapro.2018.03.014

    Article  Google Scholar 

  31. Liu ZM, Fang YX, Qiu JY, Feng MN, Luo Z, Yan JR (2017) Stabilization of weld pool through jet flow argon gas backing in C-Mn steel keyhole TIG welding. J Mater Process Technol 250(12):132–143. https://doi.org/10.1016/j.jmatprotec.2017.07.008

    Article  Google Scholar 

  32. Liu ZM, Fang YX, Cui SL, Yi S, Qiu JY, Jiang Q, Liu WD, Luo Z (2017) Keyhole thermal behavior in GTAW welding process. Int J Therm Sci 114(4):352–362. https://doi.org/10.1016/j.ijthermalsci.2017.01.005

    Article  Google Scholar 

  33. Fei ZY, Pan ZX, Cuiuri D, Li HJ, Wu BT, Su LH (2019) Improving the weld microstructure and material properties of K-TIG welded armour steel joint using filler material. Int J Adv Manuf Technol 100:1931–1944. https://doi.org/10.1007/s00170-018-2787-y

    Article  Google Scholar 

  34. Liu ZM, Chen SY, Yuan X, Zuo AQ, Zhang T, Luo Z (2018) Magnetic-enhanced keyhole TIG welding process. Int J Adv Manuf Technol 99:275–285. https://doi.org/10.1007/s00170-018-2501-0

    Article  Google Scholar 

  35. Zhang BR, Shi YH, Gu SY (2019) Narrow-seam identification and deviation detection in keyhole deep-penetration TIG welding. Int J Adv Manuf Technol 101(5–8):2051–2064. https://doi.org/10.1007/s00170-018-3089-0

    Article  Google Scholar 

  36. Wang YP, Qi BJ, Cong BQ, Zhu MJ, Lin SB (2018) Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding. J Manuf Process 34:179–186. https://doi.org/10.1016/j.jmapro.2018.06.006

    Article  Google Scholar 

  37. Fang YX, Liu ZM, Cui SL, Zhang Y, Qiu JY, Luo Z (2017) Improving Q345 weld microstructure and mechanical properties with high frequency current arc in keyhole mode TIG welding. J Mater Process Technol 250:280–288. https://doi.org/10.1016/j.jmatprotec.2017.07.026

    Article  Google Scholar 

  38. Qi BJ, Yang MX, Cong BQ, Liu FJ (2013) The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel. Int J Adv Manuf Technol 66:1545–1553. https://doi.org/10.1007/s00170-012-4438-z

    Article  Google Scholar 

  39. Zhao JR, Sun D, Hu SS (1992) Anode behavior of high frequency pulse TIG welding arc. Trans China Weld Institution 13(1):59–66

    Google Scholar 

  40. Morisada Y, Fujii H, Inagaki F, Kamai M (2013) Development of high frequency tungsten inert gas welding method. Mater Des 44:12–16. https://doi.org/10.1016/j.matdes.2012.07.054

    Article  Google Scholar 

  41. Balle F (2012) Ultrasonic welding. JOM 64(3):400–400. https://doi.org/10.1007/s11837-012-0261-0

    Article  Google Scholar 

  42. Yan JC, Yang CL, Liu HJ, Cui W, Xie WF, Guo WB (2015) Overview on ultrasonic-assisted welding and its scientific issues. J Mech Eng 51(24):41–49. https://doi.org/10.3901/JME.2015.24.041

    Article  Google Scholar 

  43. Yuan HR, Lin SB, Yang CL, Fan CL, Wang S (2011) Microstructure and porosity analysis in ultrasonic assisted TIG welding of 2014 aluminum alloy. China Weld 20(1):39–43

    Google Scholar 

  44. He LB, Li LM, Hao HW (2006) Grain refinement and high performance of titanium alloy joint using arc-ultrasonic gas tungsten arc welding. Sci Technol Weld Join 11:72–74. https://doi.org/10.1179/174329306X77083

    Article  Google Scholar 

  45. Chen XZ, Shen Z, Wang JJ, Chen J, Lei YC, Huang QY (2012) Effects of an ultrasonically excited TIG arc on CLAM steel weld joints. Int J Adv Manuf Technol 60(5–8):537–544. https://doi.org/10.1007/s00170-011-3611-0

    Article  Google Scholar 

  46. Suita Y, Tsukuda Y, Terajima N, Takahashi H, Ogasawara M, Ohji T, Masubuchi K (1997) Welding aluminum ally by hollow electrode TIG in a vacuum. Weld Int 11(8):605–614. https://doi.org/10.1080/09507119709448442

    Article  Google Scholar 

  47. Chen SJ, Wang JX, Jiang F, Yan ZY, Gong JL (2016) Research of hollow tungsten central negative pressure arc welding characteristic. J Mech Eng 52(2):7–12. https://doi.org/10.3901/JME.2016.02.007

    Article  Google Scholar 

  48. Jiang F, Yan ZY, Chen SJ, Lu ZY (2016) The energy distribution of electrode in hollow cathode centered negative pressure arc. J Manuf Process 24(1):138–144. https://doi.org/10.1016/j.jmapro.2016.08.005

    Article  Google Scholar 

  49. Jiang F, Chen SJ, Zhang RY, Yan ZY, Wang JX, Zhang YM (2016) Hollow cathode centered negative pressure arc. Weld J 95(10):395–408

    Google Scholar 

  50. Chen SJ, Yan ZY, Jiang F, Lu ZY (2016) The pressure distribution of hollow cathode centered negative pressure arc. J Manuf Process 23:21–28. https://doi.org/10.1016/j.jmapro.2016.05.016

    Article  Google Scholar 

  51. Tashiro S, Tanaka M, Nakatani M, Tani K, Furubayashi M (2007) Numerical analysis of energy source properties of hollow cathode arc. Surf Coat Technol 201(9–11):5431–5434. https://doi.org/10.1016/j.surfcoat.2006.07.158

    Article  Google Scholar 

  52. Xu JP, Tian XB, Qi HQ, Wang JJ, Gong CZ, Xu P (2019) Characterization of hollow cathode vacuum arc with axial magnetic field as a concentrated heat source. Vacuum 160:70–74. https://doi.org/10.1016/j.vacuum.2018.11.012

    Article  Google Scholar 

  53. Wu H, Chang YL, Lu L, Bai J (2017) Review on magnetically controlled arc welding process. Int J Adv Manuf Technol 91(9–12):4263–4273. https://doi.org/10.1007/s00170-017-0068-9

    Article  Google Scholar 

  54. Nomura K, Morisaki K, Hirata Y (2009) Magnetic control of arc plasma and its modeling. Welding in the World 53(7/8):181–187. https://doi.org/10.1007/BF03266730

    Article  Google Scholar 

  55. Baskoro AS, Fauzian A, Basalamah H, Kiswanto G, Winarto W (2018) Improving weld penetration by employing of magnetic poles’ configurations to an autogenous tungsten inert gas (TIG) welding. Int J Adv Manuf Technol 99(5–8):1603–1613. https://doi.org/10.1007/s00170-018-2552-2

    Article  Google Scholar 

  56. Wang JF, Sun QJ, Feng JC, Wang SL, Zhao HY (2017) Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation. Int J Adv Manuf Technol 90(1–4):413–420. https://doi.org/10.1007/s00170-016-9407-5

    Article  Google Scholar 

  57. Wang JF, Sun QJ, Feng JC, Zhang T, Zhang S, Liu YB (2018) Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW. J Mater Process Technol 254:254–264. https://doi.org/10.1016/j.jmatprotec.2017.11.042

    Article  Google Scholar 

  58. Wang L Wu CS, Gao JQ (2016) Suppression of humping bead in high speed GMAW with external magnetic field. Sci Technol Weld Join 21(2):131–139. https://doi.org/10.1179/1362171815Y.0000000074

    Article  Google Scholar 

  59. Chen SJ, Hua AB, Yin SY (2006) Arc movement characteristics of TIG welding in a rotating magnetic field. Welding & Joining 10:34–36. https://doi.org/10.3969/j.issn.1001-1382.2006.10.007

    Article  Google Scholar 

  60. Liu ZJ, Li YH, Su YH (2018) Simulation and analysis of heat transfer and fluid flow characteristics of arc plasma in longitudinal magnetic field-tungsten inert gas hybrid welding. Int J Adv Manuf Technol 98(5–8):2015–2030. https://doi.org/10.1007/s00170-018-2320-3

    Article  Google Scholar 

  61. Yin XQ, Gou JJ, Zhang JX, Sun JT (2012) Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields. J Phys D Appl Phys 45(28):285203. https://doi.org/10.1088/0022-3727/45/28/285203

    Article  Google Scholar 

  62. Luo J, Yao ZX, Xue KL (2016) Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding. Int J Adv Manuf Technol 84(1–4):1–15. https://doi.org/10.1007/s00170-015-7728-4

    Article  Google Scholar 

  63. Lu L (2014) Behavior research on high frequency double-pulse TIG welding arc. Shenyang University of Technology, Shenyang

    Google Scholar 

  64. Zhu L, Zhang RJ, Tian YJ (2007) TIG arc constricted by rotating ceramic plates. Trans China Weld Institution 28(11):1–4. https://doi.org/10.1016/S1001-6058(07)60030-4

    Article  Google Scholar 

  65. Cai XY, Lin SB, Murphy AB, Dong BL, Fan CL, Yang CL (2018) Influence of helium content on a ternary-gas-shielded GMAW process. Welding in the World 62(5):973–984. https://doi.org/10.1007/s40194-018-0631-5

    Article  Google Scholar 

  66. Kah P, Martikainen J (2013) Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64(9–12):1411–1421. https://doi.org/10.1007/s00170-012-4111-6

    Article  Google Scholar 

  67. Liu W, Wang HP, Lu FG, Cui HC (2015) Investigation on effects of process parameters on porosity in dissimilar Al alloy lap fillet welds. Int J Adv Manuf Technol 81(5–8):843–849. https://doi.org/10.1007/s00170-015-7276-y

    Article  Google Scholar 

  68. Ikegami Y, Miyauchi H, Yamamoto S, Uchihara M (2012) Shielding gases for improved GMAW and GTAW processes. Weld Int 26(3):187–195. https://doi.org/10.1080/09507116.2011.590664

    Article  Google Scholar 

  69. Mirzaei M, Khodabandeh A, Najafi H (2016) Effect of active gas on weld shape and microstructure of highly efficient TIG welded A516 low carbon steel. Trans Indian Inst Metals 69(9):1723–1731. https://doi.org/10.1007/s12666-016-0832-9

    Article  Google Scholar 

  70. Zheng Y, Wang YC, Li H, Xing WQ, Yu XY, Dong P, Wang WX, Fan GW, Lian J, Ding M (2016) An experimental study of nitrogen gas influence on the 443 ferritic stainless steel joints by double-shielded welding. Int J Adv Manuf Technol 87(9–12):3315–3323. https://doi.org/10.1007/s00170-016-8693-2

    Article  Google Scholar 

  71. Zhou CF, Jiao XD, Xue L, Chen JQ, Fang XM (2010) Study on sub-sea pipelines hyperbaric welding repair under high air pressures. Robotic Welding, Intelligence and Automation,:391–397. DOI: https://doi.org/10.1007/978-3-642-19959-2_48

  72. Li K, Gao HM, Li HC, Gong S (2014) Droplet rebounded spatter in dry hyperbaric gas metal arc welding process. Int J Adv Manuf Technol 74(5–8):693–698. https://doi.org/10.1007/s00170-014-5990-5

    Article  Google Scholar 

  73. Allum CJ (1982) Characteristics and structure of high pressure(1- 42bars) gas tungsten arcs. Cranfield Institute of Technology, Cranfield, Bedfordshire, England

    Google Scholar 

  74. Zhang LJ, Gao XL, Sun MJ, Zhang JX (2014) Weld outline comparison between various pulsed Nd:YAG laser welding and pulsed Nd:YAG laser-TIG arc welding. Int J Adv Manuf Technol 75:153–160. https://doi.org/10.1007/s00170-014-6122-y

    Article  Google Scholar 

  75. Faraji AH, Moradi M, Goodarzi M, Colucci P, Maletta C (2017) An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy. Opt Lasers Eng 96:1–6. https://doi.org/10.1016/j.optlaseng.2017.04.004

    Article  Google Scholar 

  76. Reisgen U, Krivtsun I, Gerhards B, Alexander Z (2016) Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb:YAG-laser beam. J Laser Appli 28(2):022402. https://doi.org/10.2351/1.4944096

    Article  Google Scholar 

  77. Ning J, Zhang LJ, Na SJ, Yin XQ, Niu J, Zhang JX, Wang HR (2017) Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd: YAG laser/TIG hybrid welding. Int J Adv Manuf Technol 91(1–4):1129–1143. https://doi.org/10.1007/s00170-016-9812-9

    Article  Google Scholar 

  78. Song G, Wang HY, Li TT, Liu LM (2018) Joining mechanism of Mg alloy/steel butt joints with Cu-Zn interlayer by hybrid laser-TIG welding source. J Iron Steel Res Int 25:221–227. https://doi.org/10.1007/s42243-018-0024-4

    Article  Google Scholar 

  79. Thomy C, Möller F, Sepold G, Vollertsen F (2009) Interaction between laser beam and arc in hybrid welding processes for dissimilar materials. Welding in the World 53(1–2):58–66. https://doi.org/10.1007/BF03266692

    Article  Google Scholar 

  80. Liu LM, Shi JP, Xu XK (2018) Analysis-effective induction efficiency of laser in pulse laser-GTA welding of titanium alloy. Int J Adv Manuf Technol 96(1–4):401–410. https://doi.org/10.1007/s00170-017-1515-3

    Article  Google Scholar 

  81. Reisgen U, Zabirov A, Krivtsun I, Demchenko V (2015) Interaction of CO2-laser beam with argon plasma of gas tungsten arc. Welding in the World 59(5):611–622. https://doi.org/10.1007/s40194-015-0236-1

    Article  Google Scholar 

  82. Kim YC, Hirohata M, Inose K (2014) Verification of possibility for controlling welding distortion generated by laser-arc hybrid welding. Int J Steel Struc 14(2):323–329. https://doi.org/10.1007/s13296-014-2012-2

    Article  Google Scholar 

  83. Kanemaru S, Sasaki T, Sato T, Tetsuo E, Manabu T (2015) Study for the mechanism of TIG-MIG hybrid welding process. Weld World 59:261–268. https://doi.org/10.1007/s40194-014-0205-0

    Article  Google Scholar 

  84. Chen J, Zong R, Wu CS, Padhy GK, Hu QX (2017) Influence of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding. J Mater Process Technol 243:131–142. https://doi.org/10.1016/j.jmatprotec.2016.12.012

    Article  Google Scholar 

  85. Kanemaru S, Sasaki T, Sato T, Mishima H, Tashiro S, Tanaka M (2014) Study for TIG-MIG hybrid welding process. Welding in the World 58(1):11–18. https://doi.org/10.1007/s40194-013-0090-y

    Article  Google Scholar 

  86. Emmanuel OO, Esther TA, Mutiu FE (2018) Study on microstructure and mechanical properties of 304 stainless steel joints by TIG–MIG hybrid welding. Surf Rev Lett 25(1):1850042. https://doi.org/10.1142/S0218625X18500427

    Article  Google Scholar 

  87. Zuo W, Ma L, Lu Y, Li SY, Ji ZQ, Ding M (2018) Effects of solution treatment temperatures on microstructure and mechanical properties of TIG–MIG hybrid arc additive manufactured 5356 aluminum alloy. Met Mater Int 24(6):1346–1358. https://doi.org/10.1007/s12540-018-0142-3

    Article  Google Scholar 

  88. Zhou YB, Zhang ZD, Liu LM (2017) Effect of arc distance on back appearance of root welding without backing plate by PMAG-TIG twin-arc welding. Int J Adv Manuf Technol 92:3583–3592. https://doi.org/10.1007/s00170-017-0393-z

    Article  Google Scholar 

  89. Zhou YB, Fang DS, Liu LM (2017) Root welding of V-groove thick plate without backing plate by MAG-TIG double-arc welding. Int J Precis Eng Manuf 18(4):623–628. https://doi.org/10.1007/s12541-017-0074-8

    Article  Google Scholar 

  90. Shen X, Ma GH, Chen P (2018) Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy. Int J Adv Manuf Technol 94:2811–2819. https://doi.org/10.1007/s00170-017-0954-1

    Article  Google Scholar 

  91. Yan K, Yang G, Zhao Y, Gao LH, Lu JS (2012) Spectrum analysis of A-TIG welding for aluminum alloy. Trans China Weld Inst 33(12):73–76. https://doi.org/10.1007/s11783-011-0280-z

    Article  Google Scholar 

  92. Vora JJ, Badheka VJ (2016) Improved penetration with the use of oxide fluxes in activated TIG welding of low activation ferritic/martensitic steel. Trans Indian Inst Metals 69(9):1755–1764. https://doi.org/10.1007/s12666-016-0835-6

    Article  Google Scholar 

  93. Li H, Zou JS, Yao JS, Peng HP (2017) Uniform design and optimization of active agent and technology research for A-TIG welding of 2219 aluminum alloy. Int J Adv Manuf Technol 92(9–12):3435–3446. https://doi.org/10.1007/s00170-017-0356-4

    Article  Google Scholar 

  94. Li CX, Zhang XF, Wang J (2018) The effect of axial external magnetic field on tungsten inert gas welding of magnesium alloy. Mater Res Exp, 5(4) DOI: https://doi.org/10.1088/2053-1591/aabb39

Download references

Funding

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51275314 and 51575362) and the Research Fund for the Key Lab Program of Shenyang City, Liaoning Province, China (F14-184-1-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Chang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Chang, Y., Mei, Q. et al. Research advances in high-energy TIG arc welding. Int J Adv Manuf Technol 104, 391–410 (2019). https://doi.org/10.1007/s00170-019-03918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03918-5

Keywords

Navigation