Skip to main content
Log in

Influence of shielding gases in the welding of metals

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Shielding gases are of considerable significance in the protection of molten metal from atmospheric contamination during welding processes. These gases play an important role in a number of aspects of welding, including arc characteristics and the microstructure of weldments. Understanding of the influence of welding shielding gases on different materials is consequently important, and extensive studies and experiments have been performed by numerous researchers. Based on previous studies, the objective of the current study is to collate and summarize the most important findings and approaches of earlier research. This paper provides analysis of the influence of different combinations of process gases on welding of commonly used materials in manufacturing. The results presented can be used as guidelines to achieve higher quality and efficiency in welding practices. This study provides a good foundation for learning and creates enhanced awareness of shielding-gas-related issues among metal industry actors, permitting objective evaluation of welding productivity and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASM International. Handbook Committee. Knovel (Firm) (1993) ASM handbook. Volume 6, Welding, brazing, and soldering

  2. Chern T-S, Tseng K-H, Tsai H-L (2011) Study of the characteristics of duplex stainless steel activated tungsten inert gas welds. Mater Des 32(1):255–263. doi:10.1016/j.matdes.2010.05.056

    Article  Google Scholar 

  3. Published in North America by CRC Press, Cambridge, Eng. Boca Raton, FL

    Book  Google Scholar 

  4. Kuk JM, Jang KC, Lee DG, Kim IS (2004) Effects of temperature and shielding gas mixture on fatigue life of 5083 aluminum alloy. J Mater Process Technol 155(156):1408–1414. doi:10.1016/j.jmatprotec.2004.04.117

    Article  Google Scholar 

  5. Praxair Direct (2003) Shielding gases selection manual 105–177

  6. Lyttle KA, Stapon G (2005) Simplifying shielding gas selection. Practical Welding Today 9 (1)

  7. Hidetoshi F, Shanping L, Toyoyuki S, Kiyoshi N (2008) Effect of oxygen content in He-O2 shielding gas on weld shape in ultra-deep penetration TIG. Trans JWRI 37(1):19–26

    Google Scholar 

  8. de Rissone NM Ramini, de Souza Bott I, de Vedia LA, Surian ES (2003) Effect of welding procedure (welding position, number of layers, arc energy, and shielding gas type) on ANSI/AWS A5.20-95 E71T1 flux cored wire deposits. Sci Technol Weld Join 8(2):113–122. doi:10.1179/136217103225008883

    Article  Google Scholar 

  9. Dilthey U, Lueder F, Wieschemann A (1999) Expanded capabilities in welding of aluminium alloys with laser-MIG hybrid process. Aluminium 75(1/2):64–75

    Google Scholar 

  10. Tusek J, Suban M (2000) Experimental research of the effect of hydrogen in argon as a shielding gas in arc welding of high-alloy stainless steel. Int J Hydrog Energy 25(4):369–376. doi:10.1016/s0360-3199(99)00033-6

    Article  Google Scholar 

  11. Compressed Gas Association (1999) Handbook of compressed gases, 4th edn. Kluwer Academic, Boston

    Book  Google Scholar 

  12. O’Brien RL (1991) Welding Handbook: Welding processes, vol 2. 8 edn. American Welding Society, 88–91

  13. Messler RW (2008) Principles of welding: processes, physics, chemistry, and metallurgy. Wiley, New York

    Google Scholar 

  14. Sato T (2001) Influence of shielding gases on quality and efficiency in gas shielded arc welding. Weld Int 15(8):616–619. doi:10.1080/09507110109549413

    Article  Google Scholar 

  15. Kou S (2003) Welding metallurgy, 2nd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  16. Tusek J (2000) Experimental investigation of gas tungsten arc welding and comparison with theoretical predictions. IEEE Trans Plasma Sci 28(5):1688–1692

    Article  Google Scholar 

  17. Ebrahimnia M, Goodarzi M, Nouri M, Sheikhi M (2009) Study of the effect of shielding gas composition on the mechanical weld properties of steel ST 37–2 in gas metal arc welding. Mater Des 30(9):3891–3895. doi:10.1016/j.matdes.2009.03.031

    Article  Google Scholar 

  18. Davies AC (1993) The science and practice of welding, 10th edn. Cambridge University Press, Cambridge, pp 114–121

    Book  Google Scholar 

  19. Filho DF, Ferraresi VA (2010) The influence of gas shielding composition and contact tip to work distance in short circuit metal transfer of ferritic stainless steel. Weld Int 24(3):206–213. doi:10.1080/09507110902843842

    Article  Google Scholar 

  20. Cay VV, Ozan S, Gok MS (2011) The effect of hydrogen shielding gas on microstructure and abrasive wear behavior in the surface modification process using the tungsten inert gas method. J Coat Technol Res 8(1):97–105

    Article  Google Scholar 

  21. Gülenç B, Develi K, Kahraman N, Durgutlu A (2005) Experimental study of the effect of hydrogen in argon as a shielding gas in MIG welding of austenitic stainless steel. Int J Hydrog Energy 30(13–14):1475–1481. doi:10.1016/j.ijhydene.2004.12.012

    Article  Google Scholar 

  22. Sathiya P, Aravindan S, Soundararajan R, Noorul Haq A (2009) Effect of shielding gases on mechanical and metallurgical properties of duplex stainless-steel welds. J Mater Sci 44(1):114–121. doi:10.1007/s10853-008-3098-8

    Article  Google Scholar 

  23. Tseng KH, Chou CP (2002) Effect of nitrogen addition to shielding gas on residual stress of stainless steel weldments. Sci Technol Weld Join 7(1):57–62. doi:10.1179/136217101125000505

    Article  Google Scholar 

  24. Filho DF, Ferraresi VA, Scotti A (2010) Shielding gas influence on the ferritic stainless steel weldability. J Eng Manuf B 224(6):951–961. doi:10.1243/09544054jem1631

    Article  Google Scholar 

  25. Huang H-Y (2009) Effects of shielding gas composition and activating flux on GTAW weldments. Mater Des 30(7):2404–2409. doi:10.1016/j.matdes.2008.10.024

    Article  Google Scholar 

  26. Lyttle K, Stapon G (2004) Selecting a shielding gas for joining stainless steel. The fabricator 34(6):2–4

    Google Scholar 

  27. Durgutlu A (2004) Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel. Mater Des 25(1):19–23. doi:10.1016/j.matdes.2003.07.004

    Article  Google Scholar 

  28. Huang H-Y (2010) Argon-hydrogen shielding gas mixtures for activating flux-assisted gas tungsten arc welding. Metall Mater Trans A 41A:2829–2835. doi:10.1007/s11661-010-0361-9

    Article  Google Scholar 

  29. Kang BY, Prasad YKDV, Kang MJ, Kim HJ, Kim IS (2009) The effect of alternate supply of shielding gases in austenite stainless steel GTA welding. J Mater Process Technol 209(10):4722–4727. doi:10.1016/j.jmatprotec.2008.11.035

    Article  Google Scholar 

  30. Deepashri DN, Raja VS, Raman R (2006) Effect of nitrogen addition on the microstructure and mechanical behavior of 317 L and 904 L austenitic stainless steel welds. J Mater Sci 41(7):2097–2112. doi:10.1007/s10853-006-3150-5

    Article  Google Scholar 

  31. Bhatt RB, Kamat HS, Ghosal SK, De PK (1999) Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds. JMEPEG 8(5):591–597. doi:10.1007/s11665-999-0014-6

    Article  Google Scholar 

  32. Brauser S, Kannengiesser Th (2010) Hydrogen absorption of different welded duplex steels. Int J Hydrog Energy 35(9):4368–4374. doi:10.1016/j.ijhydene.2010.01.148

    Article  Google Scholar 

  33. Prokić-Cvetković R, Kastelec-Macura S, Milosavljević A, Popović O, Burzić M (2010) The effect of shielding gas composition on the toughness and crack growth parameters of AlMg4, 5Mn weld metals. J Min Metall B Metall 46(2):193–202

    Article  Google Scholar 

  34. Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Mario Lugarà P (2006) A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation. Opt Lasers Eng 44(10):1039–1051. doi:10.1016/j.optlaseng.2005.09.002

    Article  Google Scholar 

  35. Ol’shanskii AN, Morozov BP (2004) Evaluation of the effect of increased pressure of shielding gas on the decrease in porosity of welded joints in aluminium alloys. Weld Int 18(4):304–306. doi:10.1533/wint.2004.3288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kah, P., Martikainen, J. Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64, 1411–1421 (2013). https://doi.org/10.1007/s00170-012-4111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4111-6

Keywords

Navigation