Skip to main content
Log in

Abstract

With its excellent welding quality and high arc stability, tungsten inert gas (TIG) welding occupies a significant proportion in industrial production. However, the low current-carrying capacity of tungsten electrodes results in low welding efficiency, which significantly hampers the industry's development. By compressing the arc and increasing the deposition efficiency, the efficiency of TIG welding can be improved. This study has reviewed three optimization methods, including optimizing process conditions, improving equipment, and external constraints. It has also analyzed the principles and research status of these methods. Further, a magnetic tungsten electrode and a double-torch TIG welding method have been prospected. The former can enhance the magnetic field effect of magnetic control TIG and reduce the volume of welding torch. The latter can increase the parameter adjustability of double tungsten electrode welding. The development of high-efficiency TIG welding promotes the progress of industry and the development of human civilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Liu X G, Guan Z Q, Zhang H X, and Chang Y L, Hot Work Technol 48 (2019) 1. https://doi.org/10.14158/j.cnki.1001-3814.2019.15.001

    Article  Google Scholar 

  2. Xu X K, Physical Mechanism and Welding Process of Low Power Pulsed Laser Induced Enhanced Twin Arc, Dissertation Dalian University of Technology (2022). https://doi.org/10.26991/d.cnki.gdllu.2022.003468

  3. Silva R G N, Pereira M, Rodrigues M B, Pereira A D S P, and Schwedersky M B, J Laser Appl 32 (2020) 22035. https://doi.org/10.2351/7.0000088

    Article  Google Scholar 

  4. Sun J, Wang H, and Liu L, Int J Precis Eng Manuf 21 (2019) 1469. https://doi.org/10.1007/s12541-019-00032-0

    Article  Google Scholar 

  5. Huang R S, Fang N W, Wu P B, Xu K, Qin J, Zhao D, Zeng C Y, and Zhou K, Electr Weld Mach 52 (2022) 10. https://doi.org/10.7512/j.issn.1001-2303.2022.06.02

    Article  Google Scholar 

  6. Li Z Y, Cao D W, Pan G W, and Wang H D, Weld Technol 47 (2018) 77. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2018.05.022

    Article  Google Scholar 

  7. Ogundimu O E, Akinlabi T E, and Erinosho F M, J Phys Conf Ser 1378 (2019) 022074. https://doi.org/10.1088/1742-6596/1378/2/022074

    Article  CAS  Google Scholar 

  8. Liu J, He Z T, and Niu J Z, Mater Dev Appl 33 (2018) 10. https://doi.org/10.19515/j.cnki.1003-1545.2018.03.002

    Article  Google Scholar 

  9. Zhang Z Z, and Zhang D D, Sichuan Metall 44 (2022) 5.

    Google Scholar 

  10. Li P, Wu G, Kang X T, Cheng Y M, Chang X F, Tuo L F, and Chu Z B, Cast Equipm Process 1 (2022) 17. https://doi.org/10.16666/j.cnki.issn1004-6178.2022.01.005

    Article  Google Scholar 

  11. Gong G X, Lu L X, Chen R L, Yu W Y, Deng S, Lu J, Li Z, Sun Y B, Zhang J G, and Xu Z J, Installation S1 (2022) 87.

    Google Scholar 

  12. Zhu J S, Microstructure Characteristics and Properties of Thick-Wall Stainless Steel with Narrow Gap of Nuclear Power RCL Piping by TIG Welding Process, Dissertation Harbin Institute of Technology (2019). https://doi.org/10.27061/d.cnki.ghgdu.2019.005438

  13. Zhao L Y, Investigation on the Effect of Micro-Region Mechanical Heterogeneity of Welded Joints on Fracture Behavior in Nuclear Thick-Walled Steel, Dissertation Qingdao University of Science and Technology (2022). https://doi.org/10.27264/d.cnki.gqdhc.2022.000464

  14. Qin G L, MW Metal Form 09 (2022) 8. https://doi.org/10.3969/j.issn.1674-165X.2022.09.002

    Article  Google Scholar 

  15. Zhang J L, Jin W L, Zhu D X, Li G, and He L W, Weld Technol 04 (2022) 94. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2022.04.008

    Article  Google Scholar 

  16. Liu Z, Mei Y Z, Zhang J F, Tang H H, and Chen L, Hot Work Technol 52 (2023) 6. https://doi.org/10.14158/j.cnki.1001-3814.20212210

    Article  Google Scholar 

  17. Jiang Y X, Study on Arc Behavior and Weld Formation of Pulsed Current Argon Tungsten Arc Welding, Dissertation Xihua University (2022). https://doi.org/10.27411/d.cnki.gscgc.2022.000533

  18. Wang Y P, Qi B J, Cong B Q, Yang M X, and Liu F J, J Mater Process Technol 249 (2017) 89. https://doi.org/10.1016/j.jmatprotec.2017.05.027

    Article  CAS  Google Scholar 

  19. Wu J, Wang Z, Zhu Z, Fan W, Lin S, Cai X, Tian J, and Guo C, Metals 13 (2023) 848. https://doi.org/10.3390/met13050848

    Article  CAS  Google Scholar 

  20. Fang H P, Study on GH4169 Pulsed Argon Arc Welding Process and Post-Weld h-eat Treatment, Dissertation Southwest Jiaotong University (2020). https://doi.org/10.27414/d.cnki.gxnju.2020.001765

  21. Wang Y X, Jiang Y X, Xu L, and Li C Q, Electr Weld Mach 53 (2023) 106. https://doi.org/10.7512/j.issn.1001-2303.2023.01.16

    Article  CAS  Google Scholar 

  22. Rosario C, Christian B, Javier F D, Francisco A J, Diego F, and Jesus S, Heliyon 9 (2023) 19819. https://doi.org/10.1016/J.HELIYON.2023.E19819

    Article  Google Scholar 

  23. Wang Z M, Jiang D H, Wu J W, and Xu M J, J Manuf Process 60 (2020) 503. https://doi.org/10.1016/j.jmapro.2020.10.054

    Article  Google Scholar 

  24. Generoso A M V, Souza D M L, Pereira C E, Monteiro N S, and Azevedo A R G, Materials 16 (2023) 6870. https://doi.org/10.3390/ma16216870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tabrizi T R, Sabzi M, Anijdan S M, Eivani A R, Park N, and Jafarian H R, J Mater Res Technol 15 (2021) 199. https://doi.org/10.1016/J.JMRT.2021.07.154

    Article  Google Scholar 

  26. Liu X G, Study on High Frequency Pulse Twin-Electrode TIG Welding Process of Stainless Steel Sheet. Dissertation Shandong University (2021). https://doi.org/10.27272/d.cnki.gshdu.2021.004725

  27. Cong B Q, Wang Y P, Qi B J, Zhong H, and Hu X, Aviat Manuf Technol 61 (2018) 38. https://doi.org/10.16080/j.issn1671-833x.2018.08.038

    Article  Google Scholar 

  28. Jarvis B J, Keyhole Gas Tungsten Arc Welding: A New Process Variant, Dissertation University of Wollongong (2001)

  29. Wang Y F, Chen Y B, Tan Z C, and Zeng L, Electr Weld Mach 52 (2022) 123. https://doi.org/10.7512/j.issn.1001-2303.2022.05.18

    Article  Google Scholar 

  30. Liu Z M, Fang Y X, Cui S L, Luo Z, Liu W D, Liu Z Y, Jiang Q, and Yi S, J Mater Process Technol 238 (2016) 65. https://doi.org/10.1016/j.jmatprotec.2016.07.005

    Article  CAS  Google Scholar 

  31. Cui S, Shi Y, and Zhang C, Trans Nonferr Met Soc China 31 (2021) 416. https://doi.org/10.1016/S1003-6326(21)65506-1

    Article  CAS  Google Scholar 

  32. Dong Z H, Li Y W, Lee B, Babkin A, and Chang Y L, Int J Adv Manuf Technol 118 (2021) 2805. https://doi.org/10.1007/S00170-021-08128-6

    Article  Google Scholar 

  33. Zhang H C, Yu J, Zhang Z X, Gao J G, Su Z F, Sun Z R, and Li Y N, Metals 12 (2022) 1139. https://doi.org/10.3390/MET12071139

    Article  CAS  Google Scholar 

  34. Fan W F, Ao S S, Huang Y F, Liu W D, Li Y, Feng Y Q, Luo Z, and Wu B, Int J Adv Manuf Technol 92 (2017) 2207. https://doi.org/10.1007/s00170-017-0234-0

    Article  Google Scholar 

  35. Shi X, and Wang W K, Electr Weld Mach 50 (2020) 69. https://doi.org/10.7512/j.issn.1001-2303.2020.09.07

    Article  Google Scholar 

  36. Yang J, Welding Technology, Microstructure and Properties of 6N01 Aluminumalloy Butt Joint Welded by K-TIG Process, Dissertation Lanzhou University of Technology (2021). https://doi.org/10.27206/d.cnki.ggsgu.2021.000377

  37. Li H, Study on Behavior of Dissimilar Steel TIG-MIG Hybrid Narrow Gap Welding by Double Layer Shielding Gas, Dissertation Taiyuan University of Technology (2017)

  38. Heiple C R, and Burgardt P, Weld J 64 (1985) 159s. https://doi.org/10.1016/0036-9748(86)90115-8

    Article  Google Scholar 

  39. Zhao R, Zhang S H, Fang T, and Cheng F J, Electr Weld Mach 48 (2018) 21. https://doi.org/10.7512/j.issn.1001-2303.2018.09.04

    Article  Google Scholar 

  40. Zhang R, Influence of Shielding Gas on the Structure and Properties of MAG Welded Joints of S355J2W+N Weathering Steel Plate, Dissertation Dalian Jiaotong university (2021). https://doi.org/10.26990/d.cnki.gsltc.2021.000326

  41. Lu S P, Dong W C, Li D Z, and Li Y Y, Acta Metallur Sin 46 (2010) 1347. https://doi.org/10.3724/sp.j.1037.2010.00437

    Article  CAS  Google Scholar 

  42. Zhang J, Shao P Z, Wang X X, and Fan D, Int J Adv Manuf Technol 125 (2022) 169. https://doi.org/10.1007/S00170-022-10703-4

    Article  Google Scholar 

  43. Zhao R, Numerical Simulation of Arc Characteristics About Double Layer Path of Gas Tungsten Arc Welding, Dissertation Tianjin University (2018). https://doi.org/10.27356/d.cnki.gtjdu.2018.002356

  44. Mao J, Microstructure and Properties of TIG Arc Additive Titanium Alloy with Double Layer Gas Compressing, Dissertation Harbin Institute of Technology (2022). https://doi.org/10.26990/10.27061/d.cnki.ghgdu.2022.001811

  45. Liu Z, Fan C L, Ming Z, Chen C, Liu A, Yang C L, Lin S B, and Wang L P, Defence Technol 17 (2021) 923. https://doi.org/10.1016/j.dt.2020.05.021

    Article  Google Scholar 

  46. Opderbecke T, and Guiheux S, Weld Int 23 (2009) 523. https://doi.org/10.1080/09507110802543146

    Article  Google Scholar 

  47. Zhao H L, Study on Forming Process and Microstructure Properties of Aluminum Alloy by Magnetic Field Assisted TOPTIG Additive Manufacturing, Dissertation Shenyang University of Technology (2022). https://doi.org/10.27322/d.cnki.gsgyu.2022.000998

  48. Prasanna N B, Malarvizhi S, and Balasubramanian V, Proc Inst Mech Eng Part B J Eng Manuf 237 (2023) 1391. https://doi.org/10.1177/09544054221129471

    Article  CAS  Google Scholar 

  49. Liu D, Numerical Simulation of TOP-TIG Arc Additive and Microstructure and Properties of Al Alloy, Dissertation Shenyang University of Technology (2023). https://doi.org/10.27322/d.cnki.gsgyu.2023.000046

  50. Rodriguez N, Vázquez L, Huarte I, Arruti E, Tabernero I, and Alvarez P, Weld World 62 (2018) 1083. https://doi.org/10.1007/s40194-018-0606-6

    Article  CAS  Google Scholar 

  51. Zhang X Y, Wang K H, Zhou Q, Ding J L, Ganguly S, Marzio G, Yang D Q, Xu X F, Dirisu P, and Williams S W, Mater Sci Eng A 762 (2019) 1. https://doi.org/10.1016/j.msea.2019.138097

    Article  CAS  Google Scholar 

  52. Madsen O, and Wilson M, Int J 34 (2007) 462. https://doi.org/10.1108/01439910710832057

    Article  Google Scholar 

  53. Wang Y, Liu P, Fan H, Guo X, and Wan F, Mater Res 26 (2023) 20220370. https://doi.org/10.1590/1980-5373-MR-2022-0370

    Article  Google Scholar 

  54. Ying G, Yang S Y, Zhou C, Xia F L, and Ruan J F J Mater Eng Perform (2023) 1–13. https://doi.org/10.1007/s11665-023-08449-5

  55. Li Y Q, Li X K, Li X K, Jia Y J, Huo X L, Xiao Z Z, and Tang L L, Weld Technol 51 (2022) 42. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2022.s1.032

    Article  CAS  Google Scholar 

  56. Voigt A L, Cunha T V, and Nino C E, J Mater Process Technol 281 (2020) 116615. https://doi.org/10.1016/j.jmatprotec.2020.116615

    Article  CAS  Google Scholar 

  57. Hori K, Watanabe H, Myoga T, and Kusano K, Weld Int 18 (2004) 456. https://doi.org/10.1533/wint.2004.3281

    Article  Google Scholar 

  58. Fan Z Q, Wan B, and Zhang H G, Res Appl 308 (2021) 132. https://doi.org/10.26914/c.cnkihy.2021.053385

    Article  Google Scholar 

  59. Li Y W, Zou W F, Lee B, Babkin A, and Chang Y L, Int J Adv Manuf Technol 109 (2020) 1207. https://doi.org/10.1007/s00170-020-05606-1

    Article  Google Scholar 

  60. Kobayashi K, Development of high efficiency twin-arc TIG welding method, in Proceedings of the IIW 2001 Annual Meeting Ljubljana 2001, Ljubljana, Slovenia, July 8–12 (2001)

  61. Hou Z L, Fu K J, Fang D S, Wang J J, Qiao J, Yang P C, and Wang Y W, Mater Trans 62 (2021) 995. https://doi.org/10.2320/matertrans.MT-M2021006

    Article  CAS  Google Scholar 

  62. Yang T, Li X, and Li Y B, Hot Work Technol 47 (2018) 1. https://doi.org/10.14158/j.cnki.1001-3814.2018.17.001

    Article  CAS  Google Scholar 

  63. Wu T L, Wang K H, Yang J J, and Zhou X X, Trans China Weld Inst 39 (2018) 117. https://doi.org/10.12073/j.hjxb.2018390236

    Article  Google Scholar 

  64. Wu T L, Yang J J, Wang K H, Guo S H, and Gao Q, Electr Weld Mach 49 (2019) 87. https://doi.org/10.7512/j.issn.1001-2303.2019.06.18

    Article  Google Scholar 

  65. Wu T L, Wang K H, and Feng Y H, Electr Weld Mach 49 (2019) 83. https://doi.org/10.7512/j.issn.1001-2303.2019.06.18

    Article  Google Scholar 

  66. Zhou Y B, and Shi W Q, Electr Weld Mach 49 (2019) 44. https://doi.org/10.7512/j.issn.1001-2303.2019.12.09

    Article  Google Scholar 

  67. Zou G W, Ma P F, Wang W B, Li Z J, and Fang D S, Electr Weld Mach 49 (2019) 168. https://doi.org/10.7512/j.issn.1001-2303.2019.04.31

    Article  Google Scholar 

  68. Han Q, Li D, Sun H, and Zhang G, Int J Adv Manuf Technol 104 (2019) 4517. https://doi.org/10.1007/s00170-019-04314-9

    Article  Google Scholar 

  69. Huang J L, Kong L, Wang M, Wu D S, and Li F, Trans China Weld Inst 40 (2019) 14. https://doi.org/10.12073/j.hjxb.2019400228

    Article  CAS  Google Scholar 

  70. Kobayashi K, Nishimura Y, Iijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, and Yamashita M, Weld World 48 (2004) 35. https://doi.org/10.1007/BF03266441

    Article  Google Scholar 

  71. Xu J P, Magnetic Confinement and Acceleration Characteristics of Electron Beam Generated in Hollow Cathode Vacuum Arc Welding, Dissertation Harbin Institute of Technology (2015). https://doi.org/10.7666/d.D01102750

  72. Chen S J, Wang J X, Jiang F, Yan C Y, and Gong J L, J Mech Eng 52 (2016) 7. https://doi.org/10.3901/JME.2016.02.007

    Article  CAS  Google Scholar 

  73. Chauhan R, Sharma D K, Rana B, Bhayani J, and Borad M, Jurnal Kejuruteraan 34 (2022) 543. https://doi.org/10.17576/jkukm-2022-34(4)-02

    Article  Google Scholar 

  74. Unni A K, and Vasudevan M, Mater Today Proc 27 (2020) 2768. https://doi.org/10.1016/j.matpr.2019.12.196

    Article  CAS  Google Scholar 

  75. Wu H, Numerical Simulation and Magnetic Compression Mechanism of Magnetic-Controlled Arc Plasma, Dissertation Shenyang University of Technology (2021). https://doi.org/10.27322/d.cnki.gsgyu.2021.000013

  76. Zhu J W, Li J, Yang C G, Wu J S, and Zhang X, Precis Form Eng 14 (2022) 105. https://doi.org/10.3969/j.issn.1674-6457.2022.10.015

    Article  CAS  Google Scholar 

  77. Sire S, and Marya S, New perspectives in TIG welding of aluminium through flux application FBTIG process, in Proceeding of the 7th International Welding Symposium, November 113–118 (2001)

  78. Jayakrishnan S, Chakravarthy P, and Muhammed Rijas A, Trans Indian Inst Met 70 (2017) 1329. https://doi.org/10.1007/s12666-016-0929-1

    Article  CAS  Google Scholar 

  79. Skariya P D, Satheesh M, Dhas E R J, and Chandrasekar G, J Comput Theor Nanosci 16 (2019) 512. https://doi.org/10.1166/jctn.2019.7760

    Article  CAS  Google Scholar 

  80. Neelima P, Agilan M, Saravanan K, Chakravarthy P, Narayana Murty S V S, Sivakumar D, and Bhanu P, Trans Indian Natl Acad Eng 6 (2021) 123. https://doi.org/10.1007/s41403-020-00195-7

    Article  Google Scholar 

  81. Fan D, Lin T, Huang Y, and Niu S F, Trans China Weld Inst 29 (2008) 1. https://doi.org/10.3321/j.issn:0253-360X.2008.12.001

    Article  CAS  Google Scholar 

  82. Zhou P S, Tang H W, Li G C, Chen S L, and Wang C L, Weld Technol 52 (2023) 14. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2023.03.016

    Article  Google Scholar 

  83. Baghel A, Sharma C, Upadhyay V, and Singh R, Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01620-1

    Article  Google Scholar 

  84. Liu Z G, Zhou X J, Zhu T T, Chen L, Chen F, and Xu Q, Mater Rep 35 (2021) 53.

    Google Scholar 

  85. Wu H, Chang Y L, Lu L, and Bai J, Int J Adv Manuf Technol 91 (2017) 12. https://doi.org/10.1007/s00170-017-0068-9

    Article  Google Scholar 

  86. Lu L, Jiao Q Y, Liu Y Y, Sun Z X, and Yao G X, Weld Technol 48 (2019) 1. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2019.08.001

    Article  CAS  Google Scholar 

  87. Sun Q J, Wang J F, Cai C W, Li Q, and Feng J C, Int J Adv Manuf Technol 86 (2016) 761. https://doi.org/10.1007/s00170-015-8214-8

    Article  Google Scholar 

  88. Wu H, Chang Y L, Babkin A, and Lee B, Weld World 65 (2020) 95. https://doi.org/10.1007/s40194-020-01000-3

    Article  Google Scholar 

  89. Dong Z H, Li Y W, Wu H, Babkin A, and Chang Y L, Weld World 65 (2021) 2093. https://doi.org/10.1007/s40194-021-01168-2

    Article  CAS  Google Scholar 

  90. Wang X L, Harrison A, Chang Y L, and Liu J, Phys Plasmas 29 (2022) 073506. https://doi.org/10.1063/5.0083796

    Article  CAS  Google Scholar 

  91. Liu D, Zhao H L, Shi L, and Chang Y L, AIP Adv 12 (2022) 085201. https://doi.org/10.1063/5.0097534

    Article  Google Scholar 

  92. Durgaprasad K, Pal S, and Das M, Int J Adv Manuf Technol 126 (2023) 5199. https://doi.org/10.1007/s00170-023-11441-x

    Article  Google Scholar 

Download references

Acknowledgements

The present research work was financially supported by Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials (Grant No. JG210027) and Shenyang Key Lab of High-tech Welding Power Source and Equipment (Grant No. S220058) and the National Natural Science Foundation of China (Grant No. 52175428)

Funding

The present research work was financially supported by Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials (Grant No. JG210027) and Shenyang Key Lab of High-tech Welding Power Source and Equipment (Grant No. S220058) and the National Natural Science Foundation of China (Grant No. 52175428).

Author information

Authors and Affiliations

Authors

Contributions

All co-authors participated in the writing or guidance of the paper and played an important role.

Corresponding author

Correspondence to Yunlong Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

We comply with the COPE guidelines and make the following commitments. All the data and experimental contents involved in this manuscript are original. It does not involve publishing in any form or language elsewhere. The quoted words of other people are marked in the text by reference.

Consent to Participate

All co-authors are aware of the writing and publication of this article and agree to publish it.

Consent to Publish

All co-authors agree to publish this article.

Availability of Data and Materials

All data in this manuscript is original and does not involve any copyright issues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, S., Chen, H. et al. Methods to Improve TIG Welding Efficiency. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03323-x

Keywords

Navigation