Skip to main content

Advertisement

Log in

Different rotational alignment of tibial component should be selected for varied tibial tubercle locations in total knee arthroplasty

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The main purpose of this study was to identify how the accuracy of the tibial rotation reference axes varied in populations with different tibial tubercle locations. We hypothesized that the accuracy of the axes of tibial rotation would be affected by the changes of tibial tubercle locations.

Methods

Surgical epicondylar axis (SEA), medial third of the patellar tendon (1/3MPT), medial third of the tibial tuberosity (1/3MTT), medial border of the tibial tuberosity (MTT) and Akagi line were drawn. The angle between SEA and horizontal line with the angle between the four tibial rotation axes and the horizontal line was compared by T test. Then, the correlation between TTTG with the angles between the four axes and SEA vertical lines was analyzed. The TTTG was divided into three subgroups (TTTG < 10 mm, 10 mm ≤ TTTG < 15 mm, TTTG ≥ 15 mm), then t test was performed for the angles between the vertical lines of the SEA and the four rotation axes of the tibia in each group.

Results

Among the four tibial rotation axes, only the difference between MTT and the line perpendicular to SEA had no statistical significance (NS.). The four tibial rotational axes were all positively correlated with TTTG (p < 0.001). When TTTG ≥ 15 mm, Akagi line was 2.5° ± 6.9°internally rotated to the line perpendicular to SEA, while the 1/3MPT and MTT was 0.9° ± 5.3°and 1.3° ± 5.9°externally rotated to the line perpendicular to the SEA when TTTG < 10 mm and 10 mm ≤ TTTG < 15 mm, respectively.

Conclusions

MTT showed the best consistency with SEA. TT-TG had a significant positive correlation with all four tibial rotational axes. In patients with TTTG < 10 mm, 10 mm ≤ TTTG < 15 mm and TTTG ≥ 15 mm, the 1/3MPT, MTT and Akagi line demonstrated good alignment consistency with SEA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000160027.52481.32172-176

    Article  PubMed  Google Scholar 

  2. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200403000-00030213-219

    Article  PubMed  Google Scholar 

  3. Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200107000-00023157-166

    Article  PubMed  Google Scholar 

  4. Balcarek P, Jung K, Ammon J, Walde TA, Frosch S, Schuttrumpf JP et al (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327

    Article  Google Scholar 

  5. Baldini A, Indelli PF, Del L, Mariani PC, Marcucci M (2013) Rotational alignment of the tibial component in total knee arthroplasty: the anterior tibial cortex is a reliable landmark. Joints 1:155–160

    Article  Google Scholar 

  6. Bedard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469:2346–2355

    Article  Google Scholar 

  7. Bell SW, Young P, Drury C, Smith J, Anthony I, Jones B et al (2014) Component rotational alignment in unexplained painful primary total knee arthroplasty. Knee 21:272–277

    Article  Google Scholar 

  8. Dalury DF (2001) Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200108000-00021150-155

    Article  PubMed  Google Scholar 

  9. Drexler M, Backstein D, Studler U, Lakstein D, Haviv B, Schwarzkopf R et al (2017) The medial border of the tibial tuberosity as an auxiliary tool for tibial component rotational alignment during total knee arthroplasty (TKA). Knee Surg Sports Traumatol Arthrosc 25:1736–1742

    Article  Google Scholar 

  10. Eisenhuth SA, Saleh KJ, Cui Q, Clark CR, Brown TE (2006) Patellofemoral instability after total knee arthroplasty. Clin Orthop Relat Res 446:149–160

    Article  Google Scholar 

  11. Fottner A, Woiczinski M, Schroder C, Schmidutz F, Weber P, Muller PE et al (2020) Impact of tibial baseplate malposition on kinematics, contact forces and ligament tensions in TKA A numerical analysis. J Mech Behav Biomed Mater 103:103564

    Article  Google Scholar 

  12. Graw BP, Harris AH, Tripuraneni KR, Giori NJ (2010) Rotational references for total knee arthroplasty tibial components change with level of resection. Clin Orthop Relat Res 468:2734–2738

    Article  Google Scholar 

  13. Hofmann S, Romero J, Roth-Schiffl E, Albrecht T (2003) Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade 32:469–476

    Article  CAS  Google Scholar 

  14. Howell SM, Chen J, Hull ML (2013) Variability of the location of the tibial tubercle affects the rotational alignment of the tibial component in kinematically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21:2288–2295

    Article  Google Scholar 

  15. Incavo SJ, Wild JJ, Coughlin KM, Beynnon BD (2007) Early revision for component malrotation in total knee arthroplasty. Clin Orthop Relat Res 458:131–136

    Article  Google Scholar 

  16. Kuriyama S, Ishikawa M, Furu M, Ito H, Matsuda S (2014) Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J Orthop Res 32:1658–1666

    Article  Google Scholar 

  17. Lakstein D, Zarrabian M, Kosashvili Y, Safir O, Gross AE, Backstein D (2010) Revision total knee arthroplasty for component malrotation is highly beneficial: a case control study. J Arthroplasty 25:1047–1052

    Article  Google Scholar 

  18. Lu Y, Ren X, Liu B, Xu P, Hao Y (2020) Tibiofemoral rotation alignment in the normal knee joints among Chinese adults: a CT analysis. BMC Musculoskelet Disord 21:323

    Article  Google Scholar 

  19. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92:1238–1244

    Article  CAS  Google Scholar 

  20. Osano K, Nagamine R, Todo M, Kawasaki M (2014) The effect of malrotation of tibial component of total knee arthroplasty on tibial insert during high flexion using a finite element analysis. Scient World J 2014:695028

    Article  Google Scholar 

  21. Panni AS, Ascione F, Rossini M, Braile A, Corona K, Vasso M et al (2018) Tibial internal rotation negatively affects clinical outcomes in total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc 26:1636–1644

    Article  Google Scholar 

  22. Pennock AT, Alam M, Bastrom T (2014) Variation in tibial tubercle-trochlear groove measurement as a function of age, sex, size, and patellar instability. Am J Sports Med 42:389–393

    Article  Google Scholar 

  23. Planckaert C, Larose G, Ranger P, Lacelle M, Fuentes A, Hagemeister N (2018) Total knee arthroplasty with unexplained pain: new insights from kinematics. Arch Orthop Trauma Surg 138:553–561

    Article  Google Scholar 

  24. Saffarini M, Nover L, Tandogan R, Becker R, Moser LB, Hirschmann MT et al (2019) The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surg Sports Traumatol Arthrosc 27:1018–1027

    Article  Google Scholar 

  25. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31

    Article  Google Scholar 

  26. Siston RA, Giori NJ, Goodman SB, Delp SL (2006) Intraoperative passive kinematics of osteoarthritic knees before and after total knee arthroplasty. J Orthop Res 24:1607–1614

    Article  Google Scholar 

  27. Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ (2006) The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 452:65–69

    Article  Google Scholar 

  28. Stephen JM, Dodds AL, Lumpaopong P, Kader D, Williams A, Amis AA (2015) The ability of medial patellofemoral ligament reconstruction to correct patellar kinematics and contact mechanics in the presence of a lateralized tibial tubercle. Am J Sports Med 43:2198–2207

    Article  Google Scholar 

  29. Tanaka MJ, Elias JJ, Williams AA, Carrino JA, Cosgarea AJ (2015) Correlation between changes in tibial tuberosity-trochlear groove distance and patellar position during active knee extension on dynamic kinematic computed tomographic imaging. Arthroscopy 31:1748–1755

    Article  Google Scholar 

  30. Tao K, Cai M, Zhu Y, Lou L, Cai Z (2014) Aligning the tibial component with medial border of the tibial tubercle–is it always right? Knee 21:295–298

    Article  Google Scholar 

  31. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200209000-00018196-201

    Article  PubMed  Google Scholar 

  32. Bos J, van der Heide HJ, Nelissen RG (2011) A computed tomography based study on rotational alignment accuracy of the femoral component in total knee arthroplasty using computer-assisted orthopaedic surgery. Int Orthop 35:845–850

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was funded by the National Natural Science Foundation of China (82002285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diao Naicheng.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

The study protocol was approved by the hospital’s Ethics Committee. The file number of the ethical approval is 2020-P2-041-01.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yike, D., Tianjun, M., Heyong, Y. et al. Different rotational alignment of tibial component should be selected for varied tibial tubercle locations in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 30, 3061–3067 (2022). https://doi.org/10.1007/s00167-021-06774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06774-7

Keywords

Navigation