Skip to main content
Log in

Variability of the location of the tibial tubercle affects the rotational alignment of the tibial component in kinematically aligned total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Our experience with computer plans of kinematically aligned total knee arthroplasty showed that the anteroposterior (AP) axis of the tibial component when viewed in an axial plane did not consistently intersect either the medial border or the medial 1/3 of the tibial tubercle. The purposes were (1) to determine the variability in the mediolateral location of the tibial tubercle with respect to the medial tibia on the magnetic resonance image (MRI) of the knee and (2) to determine whether the AP axis of the kinematically aligned tibial component intersects either the medial border or the medial 1/3 of the tibial tubercle.

Methods

One hundred and fifteen knees in 111 consecutive subjects treated with total knee arthroplasty were studied. The mediolateral location of the tibial tubercle was measured from a magnetic resonance image (MRI) of the knee. The distances between the AP axis of the tibial component and the medial border of the tibial tubercle and between the AP axis and the medial 1/3 of the tibial tubercle were measured from a computer plan of the reconstructed knee.

Results

On the MRI, the medial border of the tibial tubercle varied 15 mm from the medial border of the tibia. On the computer plan, the AP axis of the tibial component in an axial view of the tibia did not intersect either the medial border (p < 0.0001) or the medial 1/3 of the tibial tubercle (p < 0.0001). In 70 and 86 % of knees, the mediolateral distance of the AP axis of the tibial component was 2 mm or greater from the medial border of the tibial tubercle and the medial 1/3 of the tibial tubercle, respectively, which causes a clinically meaningful error in rotation of 5° or more.

Conclusions

Because the mediolateral location of the tibial tubercle varies, the medial border and medial 1/3 of the tibial tubercle are not reliable landmarks when the goal is to kinematically align the rotation of the tibial component on the tibia.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abadie P, Galaud B, Michaut M, Fallet L, Boisrenoult P, Beaufils P (2009) Distal femur rotational alignment and patellar subluxation: a CT scan in vivo assessment. Orthop Traumatol Surg Res 95:267–271

    Article  PubMed  CAS  Google Scholar 

  2. Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176

    Article  PubMed  Google Scholar 

  3. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219

    Article  PubMed  Google Scholar 

  4. Baker PN, van der Meulen JH, Lewsey J, Gregg PJ (2007) The role of pain and function in determining patient satisfaction after total knee replacement. Data from the national joint registry for England and Wales. J Bone Jt Surg 89B:893–900

    Google Scholar 

  5. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  PubMed  Google Scholar 

  6. Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470:45–53

    Article  PubMed  Google Scholar 

  7. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  PubMed  Google Scholar 

  8. Bonner TJ, Eardley WGP, Patterson P, Gregg PJ (2011) The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years. J Bone Jt Surg 93B:1217–1222

    Google Scholar 

  9. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468:57–63

    Article  PubMed  Google Scholar 

  10. Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM (2004) Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Jt Surg 86B:818–823

    Article  Google Scholar 

  11. Cobb JP, Dixon H, Dandachli W, Iranpour F (2008) The anatomical tibial axis: reliable rotational orientation in knee replacement. J Bone Jt Surg 90B:1032–1038

    Google Scholar 

  12. Coughlin KM, Incavo SJ, Churchill DL, Beynnon BD (2003) Tibial axis and patellar position relative to the femoral epicondylar axis during squatting. J Arthroplasty 18:1048–1055

    Article  PubMed  Google Scholar 

  13. Dossett GH, Swartz GJ, A EN, LeFevre GW, Kwasman BG (in press) Kinematic versus mechanically aligned total knee arthroplasty: a prospective randomized double blind study. Orthopedics 32:e160–169

  14. Eckhoff D, Hogan C, DiMatteo L, Robinson M, Bach J (2007) Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop Relat Res 461:238–244

    PubMed  Google Scholar 

  15. Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Flannery NM (2005) Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg 87A(Suppl 2):71–80

    Article  Google Scholar 

  16. Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Rubinstein D, Humphries S (2003) Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II. J Bone Joint Surg 85A(Suppl 4):97–104

    Google Scholar 

  17. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    PubMed  Google Scholar 

  18. Howell SM, Howell SJ, Hull ML (2010) Assessment of the radii of the medial and lateral femoral condyles in varus and valgus knees with osteoarthritis. J Bone Joint Surg 92A:98–104

    Article  Google Scholar 

  19. Howell SM, Kuznik K, Hull ML, Siston RA (2008) Results of an initial experience with custom-fit positioning total knee arthroplasty in a series of 48 patients. Orthopedics 31:857–863

    Article  PubMed  Google Scholar 

  20. Howell SM, Kuznik K, Hull ML, Siston RA (2010) Longitudinal shapes of the tibia and femur are unrelated and variable. Clin Orthop Relat Res 468:1142–1148

    Article  PubMed  Google Scholar 

  21. Howell SM, Rogers SL (2009) Method for quantifying patient expectations and early recovery after total knee arthroplasty. Orthopedics 32:884–890

    Article  PubMed  Google Scholar 

  22. Huddleston JI, Scott RD, Wimberley DW (2005) Determination of neutral tibial rotational alignment in rotating platform TKA. Clin Orthop Relat Res 440:101–106

    Article  PubMed  Google Scholar 

  23. Ikeuchi M, Yamanaka N, Okanoue Y, Ueta E, Tani T (2007) Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. J Bone Jt Surg 89B:45–49

    Google Scholar 

  24. Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP (2010) The geometry of the trochlear groove. Clin Orthop Relat Res 468:782–788

    Article  PubMed  Google Scholar 

  25. Lewis P, Rorabeck CH, Bourne RB, Devane P (1994) Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop Relat Res 299:11–17

    PubMed  Google Scholar 

  26. Lutzner J, Krummenauer F, Gunther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57

    Article  PubMed  Google Scholar 

  27. Nagamine R, Miyanishi K, Miura H, Urabe K, Matsuda S, Iwamoto Y (2003) Medial torsion of the tibia in Japanese patients with osteoarthritis of the knee. Clin Orthop Relat Res 408:218–224

    Article  PubMed  Google Scholar 

  28. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43

    Article  PubMed  Google Scholar 

  29. Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg 92A:2143–2149

    Article  Google Scholar 

  30. Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ (2006) The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 452:65–69

    Article  PubMed  Google Scholar 

  31. Tang WM, Zhu YH, Chiu KY (2000) Axial alignment of the lower extremity in Chinese adults. J Bone Joint Surg 82A:1603–1608

    Google Scholar 

  32. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 402:196–201

    Article  PubMed  Google Scholar 

  33. Weber WE, Weber EFM (1836) Mechanik der menschlichen Gehwerkzeuge (Mechanics of the human walking apparatus). Verlag der Dietrichschen Buchhandlung, Göttingen

    Google Scholar 

  34. Yip DK, Zhu YH, Chiu KY, Ng TP (2004) Distal rotational alignment of the Chinese femur and its relevance in total knee arthroplasty. J Arthroplast 19:613–619

    Article  Google Scholar 

Download references

Conflict of interest

No authors have signed any agreement with a commercial interest related to this study, which would in any way limit publication of any and all data generated for the study or to delay publication for any reason. One of the authors (SMH) is a paid consultant for and receives royalties from Biomet Sports Medicine, Inc, and is a consultant for Stryker Orthopaedics. Two authors (SMH, MLH) receive research support from Stryker Orthopaedics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maury L. Hull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, S.M., Chen, J. & Hull, M.L. Variability of the location of the tibial tubercle affects the rotational alignment of the tibial component in kinematically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21, 2288–2295 (2013). https://doi.org/10.1007/s00167-012-1987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1987-5

Keywords

Navigation